Pi Coding Agent Handbook

An unofficial community handbook

Pi Handbook Community



Table of contents

Table of contents

1. Pi Coding Agent Handbook

1.1
1.2
1.3

1.4

What's inside
Get involved
Chapters

Key references

2. Core Philosophy

2.1
2.2
2.3
2.4
2.5

2.6

The Minimal Core

Context Engineering as First Principle
Primitives, Not Features

Software That Builds Itself

The "What We Didn't Build" List

YOLO by Default

3. Architecture and Four Tools

3.1
3.2
3.3
3.4

3.5

The Monorepo

Four Tools

Four Execution Modes
Context Control Stack

Session Format

4. Extension System

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Capabilities

Quick Start
Extension Locations
Event Lifecycle
Skills vs Extensions
Pi Packages

Self-Extending Agent

5. Session Management

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Core Concepts

Key Commands
In-Session Navigation
Branching Workflow
Compaction
Cross-Project Sessions

Comparison with Amp's Thread Model

-2/42 -

N9 o o O

© o o 00 .

10
10
10
10
11
12
12
12
13
13
13
13
14
15
15
15
15
15
16
16
16

CC BY-SA 4.0



6. Multi-Model Freedom

6.1
6.2
6.3
6.4
6.5
6.6
6.7
7. No
7.1
7.2
7.3
7.4
7.5
7.6

7.7

Supported Providers

Switching Models

Context Handoff

Model Aliases (via pi-model-switch extension)
Custom Providers

Scoped Models

Practical Workflow

MCP: The CLI-First Philosophy
The Problem with MCP

The CLI Alternative

The Benchmark

If You Must Use MCP

The Deeper Argument
Community Perspective

The Counter-Argument: MCP Is Evolving

8. Community Extensions

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

shitty-extensions (by hjanuschka)

pi-model-switch (by nicobailon)
pi-subagent-enhanced (by nicobailon)
@marckrenn/pi-sub-core

pi-skills (by Mario Zechner)

Armin Ronacher's Extensions (referenced in his blog)
Notable Community Integrations

Finding More Packages

9. Comparison with Other Agents

9.1
9.2
9.3
9.4
9.5

9.6

Overview Matrix
Pi vs Claude Code
Pi vs Amp

Pi vs OpenCode
Pi vs Aider

The Armin Ronacher Perspective

10. Limitations and Gaps

10.1
10.2
10.3
10.4

10.5

No Native Cross-Session References

No Built-in Permission System

No IDE Integration

Steeper Learning Curve for Non-Terminal Users

Extension Quality Varies

-3/42 -

Table of contents

17
17
17
17
17
18
18
18
19
19
19
19
20
20
20
20
22
22
22
23
23
23
23
24
24
25
25
25
26
26
26
26
27
27
27
27
27

27

CC BY-SA 4.0



10.6 No Built-in Eval/Testing Framework
10.7 Windows Support is Second-Class
10.8 No Server-Side Session Management
10.9 No Native Long-Term Memory
10.10 Small (but Growing) Ecosystem
10.11 The "Un-Google-able" Name
10.12 No Cloud Workspace
11. Quick Start and Daily Workflows
11.1 Installation
11.2 Android (Termux) Setup
11.3 Authentication
11.4 First Session
11.5 Essential Commands
11.6 Editor Features
11.7 Message Queuing
11.8 Recommended Setup
11.9 Daily Workflow Patterns
12. Code Snippets Reference
12.1 Extension: Permission Gate
12.2 Extension: Oracle (Simplified)
12.3 Extension: Session Recall
12.4 Skill: Web Search (CLI-based)
12.5 AGENTS.md Template
12.6 Custom Provider Configuration
13. Official References
13.1 Core Documentation
13.2 Extension Examples (50+)
13.3 Source Code
13.4 Community Packages
13.5 CLI Tools (Mario's agent-tools)
13.6 Blog Posts and Articles
13.7 Community Discussions
13.8 DeepWiki (Al-generated docs from source)
14. Contributing
14.1 What we're looking for
14.2 How to contribute
14.3 Guidelines

14.4 Local preview

-4/42 -

Table of contents

28
28
28
28
28
28
29
30
30
30
30
30
31
31
31
32
32
34
34
34
35
35
36
36
37
37
37
37
38
38
38
38
39
40
40
40
40
40

CC BY-SA 4.0



Table of contents

14.5 What not to do 41
14.6 License 41
15. Download 42

-5/42 - CC BY-SA 4.0



1. Pi Coding Agent Handbook

1. Pi Coding Agent Handbook

Agentic coding is probably the best thing that's happened since the ChatGPT moment. These tools are how individual builders
ship software that used to take teams — and the more we push them, the more high-quality personal software the world gets.
That matters.

I've been through the cycle — Aider, Cursor, Claude Code, Amp, OpenCode, Codex, Goose, Kiro, Kilo, Roo — the list goes on. I
still use many of them daily. I'd already cut most of my Claude Code time once Amp came along, but with pi I'm feeling like I
could finally stop reaching for it altogether.

Let me be honest about one thing. Claude Code is innovative. It was mindblowing for a long time and it's still pushing forward. I
respect what it's done for this space. I just don't like its arrogance. That's personal, and you're welcome to disagree. Pi is the
opposite — humble, minimal, and trusts you to drive. That's the energy I want to build with.

This handbook is what I wish existed when I started with pi. It covers the philosophy, the architecture, the extension system, the
tradeoffs, and the honest gaps. It's opinionated because pi is opinionated, and that's the point.

I don't claim to be an expert. I'm just a builder who got hooked and wanted to write things down. If something here is wrong,
outdated, or could be said better — please fix it. This is your handbook too.

1.1 What's inside

The core argument for pi, the four-tool architecture, how extensions replace features other agents bake in, the no-MCP stance
(and why MCP 2.0 might change the calculus), community packages like oracle and handoff, a fair comparison with Claude
Code / Amp / OpenCode / Aider, and a quick start that gets you running on macOS, Linux, or Android via Termux.

12 chapters. Code snippets. Every claim sourced.

1.2 Get involved

This handbook lives or dies by contributions. A typo fix, a better code example, a one-paragraph tip, a whole new chapter — it all
counts. The Limitations page is full of gaps waiting to be filled. Every one of them is an open invitation.

If you've built something with pi — an extension, a workflow, a workaround — write it up. Someone out there is stuck on the
exact problem you solved last week. We're especially interested in patterns for using pi as a general agent orchestrator —
coordinating sub-agents, chaining tasks, making the build process more fun, not just more productive.

O Contribute @ Download PDF

d
Bisclaimer

This is an unofficial community handbook. It is not affiliated with or endorsed by Mario Zechner or the pi project. All quotes are
attributed to their original authors and linked to their sources. Pi is MIT licensed.

-6/42 - CC BY-SA 4.0


/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
https://github.com/badlogic/pi-mono/blob/main/LICENSE

1.3 Chapters

10

1.4 Key references

Resource

Website

Chapter

Core Philosophy
Architecture
Extension System
Session Management
Multi-Model Freedom
No MCP

Community Extensions
Comparison
Limitations

Quick Start

Code Snippets

References

Link

What you'll learn

Why pi exists, what it deliberately omits
The minimal core: read, write, edit, bash
TypeScript extensions, skills, packages
Tree-structured branching, compaction
15+ providers, mid-session switching
The CLI-first philosophy and its tradeoffs
Oracle, handoff, sub-agents, and more
Pi vs Claude Code vs Amp vs others
Honest assessment of current gaps
Installation, config, daily workflows
Concrete extension and config examples

Official docs, community links, articles

GitHub

npm

Mario's blog

MCP vs CLI benchmark

Armin Ronacher

shittycodingagent.ai

badlogic/pi-mono
@mariozechner/pi-coding-agent

What I learned building a minimal coding agent
MCP vs CLI: Benchmarking Tools

Pi: The Minimal Agent Within OpenClaw

-7/42 -

1.3 Chapters

CC BY-SA 4.0


https://shittycodingagent.ai
https://github.com/badlogic/pi-mono
https://www.npmjs.com/package/@mariozechner/pi-coding-agent
https://mariozechner.at/posts/2025-11-30-pi-coding-agent/
https://mariozechner.at/posts/2025-08-15-mcp-vs-cli/
https://lucumr.pocoo.org/2026/1/31/pi/

2. Core Philosophy

2. Core Philosophy

Pi's design is guided by a single principle: if I don't need it, it won't be built.

Mario Zechner built pi because existing agents (Claude Code, Cursor, Codex) kept adding features he didn't use, injecting hidden
context he couldn't inspect, and changing behavior on every release. Pi is his answer: a coding agent that is aggressively
minimal, fully transparent, and extensible by the user -- not the vendor.

2.1 The Minimal Core

Pi ships with exactly four tools: read, write, edit, bash. That's it. No plan mode, no sub-agents, no MCP, no permission popups,
no built-in to-dos, no background bash.

From the website:

Pi is aggressively extensible so it doesn't have to dictate your workflow. Features that other tools bake in can be built with
extensions, skills, or installed from third-party pi packages. This keeps the core minimal while letting you shape pi to fit how you
work.

2.2 Context Engineering as First Principle

Pi has the shortest system prompt of any coding agent. This matters because every token in the system prompt competes with
your actual code and instructions for the model's attention.

From Ewald Benes (r/ClaudeCode):

By default, tools like Claude Code inject a massive amount of hidden text before your prompt even begins. This "bloat" burns
through thousands of tokens before you've typed a single word. The creators of these tools make dozens of architectural
decisions for you -- whether you want them or not -- which often leads to the LLM becoming "distracted" by its own internal
instructions.

Pi's approach: give the model the minimum it needs, and let the user control what else goes in via AGENTS.md, SYSTEM.md,
skills, and extensions.

2.3 Primitives, Not Features

Instead of building plan mode, pi gives you extensions. Instead of building sub-agents, pi gives you extensions. Instead of
building MCP support, pi gives you bash + skills.

From Armin Ronacher:

This is not a lazy omission. This is from the philosophy of how Pi works. Pi's entire idea is that if you want the agent to do
something that it doesn't do yet, you don't go and download an extension or a skill or something like this. You ask the agent to
extend itself. It celebrates the idea of code writing and running code.

2.4 Software That Builds Itself

Pi ships with its own documentation and extension examples that the agent can read. This means you can literally tell pi: "Build
me an extension that does X" and it will read the docs, write the extension, hot-reload it, test it, and iterate until it works.

From Armin Ronacher:

It also ships with documentation and examples that the agent itself can use to extend itself. Even better: sessions in Pi are trees.
You can branch and navigate within a session which opens up all kinds of interesting opportunities such as enabling workflows
for making a side-quest to fix a broken agent tool without wasting context in the main session.

-8/42 - CC BY-SA 4.0



2.5 The "What We Didn't Build" List

Feature Pi's stance
MCP Will not support
Sub-agents Not built-in
Plan mode Not built-in
Permission popups Not built-in
To-do tracking Not built-in
Background bash Not built-in

2.6 YOLO by Default

2.5 The "What We Didn't Build" List

Alternative

CLI tools + READMESs, or mcporter

Extensions, tmux, or community packages

Just tell it "make a plan", or install an extension
Run in container, or build confirmation extension
Use TODO.md, or build a tool extension

Use tmux for full observability

Pi runs in "YOLO mode" -- it executes tools without asking for permission. This is a deliberate choice. Mario's argument: if the

agent can write and run code, security theater (confirmation dialogs) doesn't actually protect you. If you want safety, use a
container or build a real permission gate via extensions.

From the blog post:

If you look at the security measures in other coding agents, they're mostly security theater. As soon as your agent can write code

and run code, it's pretty much game over.

-9/42 - CC BY-SA 4.0



3. Architecture and Four Tools

3. Architecture and Four Tools

3.1 The Monorepo

Pi is built as a monorepo ( badlogic/pi-mono ) with cleanly separated packages:

Package Purpose

pi-ai Unified LLM API across 4 wire protocols (OpenAl Completions, OpenAl Responses, Anthropic Messages,
Google Generative Al)

pi-agent-core Agent loop, tool execution, event streaming

pi-tui Terminal Ul framework with differential rendering, flicker-free output
pi-coding-agent The CLI that wires it all together

pi-mom Slack bot / autonomous agent built on pi

pi-web-ui Web-based chat interface components

pi-pods vLLM pod management for self-hosting

3.2 Four Tools

The agent has exactly four built-in tools:

read -- Read file contents (text and images)
write -- Create or overwrite files

edit -- Surgical find-and-replace edits

bash -- Execute shell commands

That's the entire tool surface. Everything else is built on top via extensions.

Why only four? Because these are the primitives that cover 95% of coding tasks. More tools means more token overhead in the
system prompt, more confusion for the model, and more things that can break between releases.

3.3 Four Execution Modes

Interactive -- Full TUI experience (default)

Print/JSON -- pi -p "query" for scripts, --mode json for event streams
RPC -- JSON protocol over stdin/stdout for non-Node integrations
SDK -- Embed pi in your own apps (how OpenClaw is built)

3.4 Context Control Stack

Pi provides multiple layers for controlling what enters the model's context:

SYSTEM.md -- Replace or append to the default system prompt (per-project)
AGENTS.md -- Project instructions, loaded from ~/.pi/agent/, parent dirs, and cwd
Skills -- On-demand capability packages (progressive disclosure)

Prompt templates -- Reusable prompts as markdown files (/name to expand)

Extensions -- Dynamic context injection, RAG, message filtering, compaction

The key insight: skills are loaded on-demand (the agent reads the README only when relevant), which means you pay the token
cost only when needed. This is "progressive disclosure" -- the opposite of MCP, which dumps all tool descriptions into context at
session start.

-10/42 - CC BY-SA 4.0



3.5 Session Format

3.5 Session Format

Sessions are JSONL files with a tree structure. Each entry has an id and parentid, enabling in-place branching without creating
new files. The format supports:

» User messages, assistant messages, tool results

* Bash execution records (command, output, exit code)

* Custom messages (extension state, persisted across restarts)

e Branch summaries and compaction summaries

» Full token usage and cost tracking per message

See 04-sessions.md for details.

-11/42 - CC BY-SA 4.0



4. Extension System

4. Extension System

Pi's extension system is its most powerful differentiator. Extensions are TypeScript modules that can hook into every aspect of
the agent's lifecycle.

4.1 Capabilities

* Register custom tools the LLM can call

 Intercept and block/modify tool calls (permission gates)

* Inject context before each turn (RAG, memory)

* Filter and transform message history

* Customize compaction behavior

* Register slash commands ( /mycommand )

» Register keyboard shortcuts

* Render custom TUI components (dashboards, pickers, overlays)
* Persist state into sessions (survives restarts)

* Register CLI flags

4.2 Quick Start

Create ~/.pi/agent/extensions/my-extension.ts :

import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { Type } from "@sinclair/typebox";

export default function (pi: ExtensionAPI) {

// React to events

pi.on("session_start", async (_event, ctx) => {
ctx.ui.notify("Extension loaded!", "info");

3

// Block dangerous commands
pi.on("tool_call", async (event, ctx) => {
if (event.toolName === "bash" && event.input.command?.includes("rm -rf")) {
const ok = await ctx.ui.confirm("Dangerous!", "Allow rm -rf?");
if (!ok) return { block: true, reason: "Blocked by user" };
}
3

// Register a custom tool
pi.registerTool({
name: "greet",
label: "Greet",
description: "Greet someone by name"
parameters: Type.Object({
name: Type.String({ description: "Name to greet" }),

b
async execute(toolCallId, params, signal, onUpdate, ctx) {
return {
content: [{ type: "text", text: ‘Hello, ${params.name}!" }],
details: {},
}
3
3

// Register a command
pi.registerCommand("hello", {
description: "Say hello",
handler: async (args, ctx) => {
ctx.ui.notify( Hello ${args || "world"}!", "info");
}
3

Test without installing:

pi -e ./my-extension.ts

-12/42 - CC BY-SA 4.0



4.3 Extension Locations

Hot-reload after changes:

/reload

4.3 Extension Locations

Location Scope
~/.pi/agent/extensions/*.ts Global (all projects)
~/.pi/agent/extensions/*/index.ts Global (subdirectory)
.pi/extensions/*.ts Project-local
.pi/extensions/*/index.ts Project-local (subdirectory)

4.4 Event Lifecycle

session_start
|
v
input --> before_agent_start --> agent_start
|
+-- turn_start
| +-- context (can modify messages)
| +-- tool_call (can block/modify)
| +-- tool_result (can transform output)
+-- turn_end
|
v
agent_end --> (next user input)

4.5 Skills vs Extensions

Skills Extensions
Format Markdown files TypeScript modules
Loaded On-demand by the agent At startup
Purpose Instructions + conventions Tools + behavior + Ul
Token cost Only when relevant Tool descriptions always in context
Sharing Pi packages Pi packages

Skills are ideal for teaching the agent how to use a CLI tool or follow a convention. Extensions are for when you need
programmatic control.

4.6 Pi Packages
Bundle extensions, skills, prompts, and themes as npm or git packages:

# Install from npm
pi install npm:shitty-extensions

# Install from git
pi install git:github.com/badlogic/pi-doom

# Pin version
pi install npm:@foo/bar@1.2.3

# Project-local (shared with team via .pi/)
pi install -1 npm:shitty-extensions

# Try without installing
pi -e npm:shitty-extensions

-13/42 - CC BY-SA 4.0



4.7 Self-Extending Agent

# Update all
pi update

# List installed

pi list

Packages use the pi-package keyword on npm for discoverability.

4.7 Self-Extending Agent

The most powerful pattern: ask pi to build its own extensions.

"Build me an extension that tracks how many tokens each tool call uses
and shows a summary widget above the editor."

Pi will read its own extension docs, write the TypeScript, hot-reload, test, and iterate. This is what Armin Ronacher calls "agents
built for agents building agents."

-14/42 - CC BY-SA 4.0



5. Session Management

5. Session Management

Pi's session system is tree-structured, which sets it apart from the linear chat history in most agents.

5.1 Core Concepts
Sessions are stored as JSONL files at:

~/.pi/agent/sessions/<project-path>/<session-id>.jsonl

Each entry has an id and parentId, forming a tree. All branches live in a single file -- no proliferation of session files when you
explore alternatives.

5.2 Key Commands

# Start pi (new session)
pi

# Continue most recent session in current project
pi -c

# Browse and pick from all past sessions (across projects)
pi -r

# Jump to a specific session by ID
pi --session abc123

# Ephemeral mode (don't save)
pi --no-session

5.3 In-Session Navigation

Command What it does

/tree Navigate the full session tree, jump to any point, continue from there
/fork Create a new session from current branch (closest to Amp's handoff)
/compact Summarize older messages, keep working

/compact <prompt> Directed compaction ("focus on the API refactor only")

/name <label> Label the current session

/export [file] Export session to HTML

/share Upload as private GitHub gist with shareable URL

5.4 Branching Workflow

Main conversation
|
+-- Message 1
+-- Message 2
+-- Message 3 <-- /tree here, select Message 2
|
+-- Branch A (original continuation)
+-- Branch B (new direction from Message 2)

-15/42 - CC BY-SA 4.0



5.5 Compaction

All branches are preserved. Use /tree to switch between them. Filter modes:

* Default view

* No-tools (hide tool calls)

e User-only

* Labeled-only (bookmarks)

e All entries

Press 1 in tree view to label entries as bookmarks for quick navigation.

5.5 Compaction

Long sessions exhaust context windows. Compaction summarizes older messages while keeping recent ones.

* Manual: /compact or /compact <instructions>
* Automatic: Triggers on context overflow (recovers and retries) or proactively when approaching the limit

* Customizable: Extensions can implement topic-based compaction, code-aware summaries, or use different summarization
models

5.6 Cross-Project Sessions

Sessions are organized by working directory, but pi -r shows sessions from ALL projects. You can jump to a session from a
different project:

pi --session <id-from-other-project>
# Pi will ask if you want to fork it into current directory

5.7 Comparison with Amp's Thread Model

Feature Amp Pi

Thread/Session Server-side threads with IDs Local JSONL files with IDs

Handoff Auto-generates focused prompt for new /fork -- copies history, you edit the starting
thread message

Thread @thread-id from anywhere Not native (read session file manually or build

mentioning extension)

Restore to point Hover + Restore button /tree -- navigate and continue

Thread map Visual graph of connected threads /tree with filter modes

The main gap: pi doesn't have native cross-session referencing. You can't @mention another session from within a session.
Workaround: ask pi to read the JSONL file, or build a /recall <session-id> extension.

-16/42 - CC BY-SA 4.0



6. Multi-Model Freedom

6. Multi-Model Freedom

One of pi's killer features: seamless model switching mid-session across 15+ providers.

6.1 Supported Providers

Via subscription (OAuth): - Anthropic Claude Pro/Max - OpenAl ChatGPT Plus/Pro (Codex) - GitHub Copilot - Google Gemini
CLI - Google Antigravity

Via API key: - Anthropic, OpenAl, Azure OpenAl, Google Gemini, Google Vertex - Amazon Bedrock, Mistral, Groq, Cerebras, xAI -
OpenRouter, Vercel Al Gateway, ZAI, OpenCode Zen - Hugging Face, Kimi For Coding, MiniMax

Self-hosted: - Ollama, llama.cpp, vLLM, LM Studio (via OpenAl-compatible API)

6.2 Switching Models

Ctrl+L -- Open model selector (full list)
Ctrl+pP -- Cycle through scoped/favorite models
Shift+Ctrl+P -- Cycle backward
/model -- Switch via command

6.3 Context Handoff

Pi-ai is designed from the ground up for cross-provider context handoff. When you switch from Anthropic to OpenAl mid-session:

» Thinking traces are converted to <thinking></thinking> content blocks
* Provider-specific signed blobs are handled transparently
 Tool call history is preserved across providers

» Token/cost tracking continues accurately
This is best-effort (providers have different capabilities), but it works well in practice.
From Ewald Benes:

Models have finally become a commodity to me. I'm currently cycling through Anthropic, z.ai, and Moonshot AI (Kimi) within the
same session. I can swap the "brain" of the agent mid-stream, and the new model picks up the context seamlessly where the last
one left off.

6.4 Model Aliases (via pi-model-switch extension)
Install the community extension:

pi install npm:pi-model-switch

Configure aliases in ~/.pi/agent/extensions/model-switch/aliases.json :

"cheap": "google/gemini-2.5-flash",

"fast": "google/gemini-2.5-flash",

"coding": "anthropic/claude-opus-4-5",

"budget": ["openai/gpt-5-mini", "google/gemini-2.5-flash"]

Then just say: "switch to cheap" or "use the coding model for this refactor."

-17/42 - CC BY-SA 4.0



6.5 Custom Providers

6.5 Custom Providers

Add providers via ~/.pi/agent/models.json if they speak a supported API:

import { getModel, stream } from "@mariozechner/pi-ai';

const ollamaModel = {
id: "llama-3.1-8b",
name: "Llama 3.1 8B (Ollama)",
api: "openai-completions",
provider: "ollama",
baseUrl: "http://localhost:11434/v1",
reasoning: false,
input: ["text"],
cost: { input: O, output: O, cacheRead: 0, cacheWrite: 0 },
contextWindow: 128000,
maxTokens: 32000,
Y

6.6 Scoped Models
Configure a subset of models for quick cycling with ctri+p:

/scoped-models -- Enable/disable models for cycling

Use --models <patterns> on the CLI for comma-separated patterns.

6.7 Practical Workflow

A typical multi-model session:

1. Start with Gemini Flash for quick exploration (cheap, fast, huge context)
2. Switch to Claude Sonnet for implementation (best coding)
3. Bring in GPT-5.2 via oracle extension for review (strong reasoning)

4. Switch to a cheap model for boilerplate/tests

All in one session, all context preserved.

-18/42 - CC BY-SA 4.0



7. No MCP: The CLI-First Philosophy

7. No MCP: The CLI-First Philosophy

This is pi's most controversial and deliberate design decision.

"pi does not and will not support MCP." -- Mario Zechner

7.1 The Problem with MCP

Popular MCP servers dump their entire tool descriptions into your context on every session:

MCP Server Tools Token cost
Playwright MCP 21 tools ~13,700 tokens
Chrome DevTools MCP 26 tools ~18,000 tokens

That's 7-9% of your context window gone before you start working. Most of those tools won't be used in a given session.
Additionally, many MCP servers are thin wrappers around CLI tools that already exist:

Just like a lot of meetings could have been emails, a lot of MCPs could have been CLI invocations. For example, there's the
GitHub MCP Server, which reimplements functionality that's already available in the GitHub CLI. There's little benefit of using
that MCP compared to telling your coding agent to use its shell tool to run the GitHub CLI directly.

7.2 The CLI Alternative

Pi's approach: build CLI tools with README files.

1. The agent reads the README only when it needs the tool (progressive disclosure)
2. Token cost is paid only on demand

3. CLI tools are composable (pipe outputs, chain commands)

4. CLI tools are easy to extend (just add another script)

5. LLMs already know how to use CLI tools from training data
Example -- adding web search to pi via a skill:

# SKILL.md

name: web-search

description: Search the web using the search CLI tool

## Usage

Run “search "your query"  to search the web.

Run “search --fetch <url>" to read a page.

See the README at ~/agent-tools/search/README.md for full options.

Mario maintains a collection of CLI tools at github.com/badlogic/agent-tools .

7.3 The Benchmark

Mario ran a formal evaluation comparing MCP vs CLI for coding agents (August 2025):

Setup: terminalcp (his tmux alternative) as both MCP server and CLI, compared against tmux and screen. Three tasks, 10 runs
each, using Claude Code.

-19/42 - CC BY-SA 4.0



7.4 If You Must Use MCP

Results:
Metric terminalcp MCP terminalcp CLI tmux screen
Success rate 100% 100% 100% 67%
Total time 51 min 66 min ~60 min ~70 min
Total cost $19.45 $19.95 $22 $22+
Key findings:

* MCP vs CLI is a wash on success rates
* MCP was 23% faster due to bypassing Claude Code's security checks on bash
» Tool design and documentation quality matter far more than the protocol

» For complex tasks, well-designed tools beat standard tools by 39% on cost
Conclusion:

Maybe instead of arguing about MCP vs CLI, we should start building better tools. The protocol is just plumbing. What matters is
whether your tool helps or hinders the agent's ability to complete tasks.

If you're building a tool from scratch and your users already have a shell tool available, just make a good CLI. It's simpler and
more portable. Plus, the output of your CLI can be further filtered and massaged just by piping it into another CLI tool, which
can increase token efficiency at the cost of additional instructions. That's not possible with MCPs.

7.4 1f You Must Use MCP

Peter Steinberger's mcporter wraps MCP servers as CLI tools, giving you the best of both worlds. OpenClaw uses this approach.

7.5 The Deeper Argument
From Armin Ronacher:

If you consider how MCP works, on most model providers, tools for MCP, like any tool for the LLM, need to be loaded into the
system context or the tool section thereof on session start. That makes it very hard to impossible to fully reload what tools can do
without trashing the complete cache or confusing the AI about how prior invocations work differently.

Pi's skill system avoids this entirely. Skills are loaded into context only when the agent determines they're relevant, and they can
be unloaded when no longer needed. This is fundamentally incompatible with how MCP tools work.

7.6 Community Perspective

From r/ClaudeAl:

Why use MCP in subagents when they can use CLI with 0 tool context overhead?
From Cobus Greyling:

What if the best interface for Al Agents is not a new protocol at all? What if it is the command line -- the same interface that has
been powering software for over fifty years?

The CLI-over-MCP movement is growing, but pi is the only major agent that has made it a first-class architectural decision.

7.7 The Counter-Argument: MCP Is Evolving

Pi's no-MCP stance is well-reasoned for today's landscape, but it's worth acknowledging that MCP is not standing still.

-20/42 - CC BY-SA 4.0


https://github.com/nicobailon/mcporter

7.7 The Counter-Argument: MCP Is Evolving

MCP 2.0 introduces significant improvements that address some of pi's criticisms:

* Streamable HTTP transport -- Replacing stdio, enabling remote multi-tenant tool servers

* OAuth 2.1 auth flows -- Making enterprise adoption realistic

* Elicitation -- The server can ask the agent for more info mid-execution, enabling richer orchestration

* Tool annotations ( readonlyHint, destructiveHint ) -- Letting agents reason about safety before calling tools, which could

enable smarter tool selection and reduce the "dump all tools into context" problem

Governance shift: Anthropic has donated MCP to the Agentic Al Foundation, which will be managed by the Linux Foundation.
This moves MCP from a single-vendor protocol to an open, community-governed standard -- similar to how Kubernetes moved
from Google to the CNCF. With broader governance, MCP is likely to evolve faster and address more real-world pain points.

What MCP supporters would argue:

» The context pollution problem is solvable with better tool selection and lazy loading (MCP 2.0's tool annotations are a step
toward this)

e CLI tools break across platforms, have version dependencies, and sometimes lack documentation -- MCP provides a structured
contract

 Stateful tools (database connections, browser sessions, long-running processes) are inherently easier with MCP's persistent
server model than with CLI invocations

* As MCP becomes an open standard under the Linux Foundation, the ecosystem will mature and the "badly designed wrapper"
problem will diminish

* Code execution MCPs (Armin Ronacher's "ubertool" pattern) can expose a single tool that accepts code, combining MCP's
statefulness with CLI's composability

The balanced view: Pi's CLI-first approach is demonstrably effective for coding agents with a bash tool. The benchmarks prove
it. But MCP and CLI are solving different layers of the problem, and as MCP 2.0 matures under open governance, the gap may
narrow. Pi's philosophy remains valid -- progressive disclosure and minimal context are good engineering regardless of protocol --
but declaring "no MCP ever" is a bet that the protocol's evolution won't produce something genuinely better than CLI +
README for the use cases pi cares about. Time will tell.

-21/42 - CC BY-SA 4.0



8. Community Extensions

8. Community Extensions

Pi's community has built extensions that cover the major features found in competing agents. Here are the most relevant

packages.

8.1 shitty-extensions (by hjanuschka)
The most comprehensive community package. Actively maintained.

pi install npm:shitty-extensions

Extension Description
oracle.ts Get second opinions from other Al models
handoff.ts Transfer context to new sessions

Equivalent in
Amp Oracle

Amp Handoff

plan-mode.ts

memory-mode. ts

cost-tracker.ts

Read-only exploration mode
Save instructions to AGENTS.md

Session spending analysis

Claude Code plan mode
Persistent learning

Built-in in Amp/Claude

clipboard.ts Copy text to system clipboard via OSC52
ultrathink.ts Rainbow animated "ultrathink" effect

loop.ts Conditional loops (by mitsuhiko/Armin Ronacher)
flicker-corp.ts Authentic fullscreen flicker experience

8.1.1 Oracle Usage
Once installed, tell the agent:

"Ask the oracle to review this implementation"
"Use the oracle to debug this race condition"
"Have the oracle brainstorm alternative approaches"

Parody of Claude Code

The oracle sends the current context to a second model (configurable) and returns its analysis. It's read-only -- it advises but

doesn't make changes.

8.1.2 Handoff Usage

/handoff now implement the authentication flow
/handoff execute phase one of the plan

Generates a focused prompt for a new session based on the current context and your goal.

8.2 pi-model-switch (by nicobailon)

Lets the agent switch models autonomously.
pi install npm:pi-model-switch

Configure aliases:

{
"cheap": "google/gemini-2.5-flash"
"coding": "anthropic/claude-opus-4-5",

-22/42 -

CC BY-SA 4.0



8.3 pi-subagent-enhanced (by nicobailon)

"budget": ["openai/gpt-5-mini", "google/gemini-2.5-flash"]
}

Usage:

"Switch to a cheaper model"
"Use Opus for this refactor"
"List available models"

8.3 pi-subagent-enhanced (by nicobailon)

Full sub-agent support with multiple execution modes.

Mode Description

Single { agent: "worker", task: "refactor auth" }
Chain Sequential tasks with {previous} placeholder
Parallel Multiple tasks running simultaneously

Async Background execution with notifications

Features: - Output truncation (configurable byte/line limits) - Debug artifacts (input, output, JSONL, metadata per task) - Session-

scoped notifications

8.4 @marckrenn/pi-sub-core
Shared usage tracking across providers.
pi install npm:@marckrenn/pi-sub-core

Tracks usage for: Anthropic, OpenAl Codex, GitHub Copilot, Google Gemini, Antigravity, z.ai, AWS Kiro.

8.5 pi-skills (by Mario Zechner)
Mario's official collection of skills for common development tasks.
pi install git:github.com/badlogic/pi-skills

These are curated, first-party skills that follow pi's philosophy of progressive disclosure -- the agent loads them on-demand when
relevant. Check the repo for the current list of available skills and their descriptions.

https://github.com/badlogic/pi-skills

8.6 Armin Ronacher's Extensions (referenced in his blog)

Armin has built several extensions he describes in his Pi writeup:

e /answer -- Extracts questions from the agent's response, presents them in a structured Ul, sends answers back
e Custom to-do tracker -- Agent-specific local issue tracker with a tool interface

 Various TUI widgets -- Dashboards, debugging interfaces

His philosophy: point your agent to an existing extension and say "build it like that, but with these changes."

-23/42 - CC BY-SA 4.0



8.7 Notable Community Integrations

8.7 Notable Community Integrations

* Emacs frontend ( dnouri/pi-coding-agent ) -- Full Emacs mode with markdown rendering, streaming, branch navigation
* OpenClaw -- Slack/Telegram bot built on pi's SDK

e pi-mom -- Mario's autonomous Slack bot

8.8 Finding More Packages
# Browse on npm
# Search for keyword: pi-package

# Or check the Discord community server

The package registry at shittycodingagent.ai/packages lists community contributions (when npm registry is reachable).

-24/42 - CC BY-SA 4.0



9. Comparison with Other Agents

9. Comparison with Other Agents

9.1 Overview Matrix

Feature Pi Claude Code Amp OpenCode Aider
Core tools 4 15+ ~10 10+ 2 (read/edit)
System prompt Minimal Large Medium Medium Minimal
size
MCP support No (by design) Yes Yes Yes No
Sub-agents Via extension Built-in Built-in Built-in No

(Oracle)
Plan mode Via extension Built-in Built-in Built-in No
Session Tree structure Linear Threads + fork Linear No
branching

Multi-model

15+ providers

Anthropic only

Anthropic +

Multi-provider

Multi-provider

OpenAl

Mid-session Yes No No Yes Yes
switch
Extension TypeScript + CLAUDE.md Toolboxes Custom tools No
system skills only
Self-extending Yes (hot- No No No No

reload)
Context Cross-provider N/A N/A Limited Limited
handoff
YOLO mode Default Opt-in Opt-in Configurable No
Open source MIT No No MIT Apache 2.0
Price Pay-per-token Subscription Subscription Pay-per-token Pay-per-token

or subscription

9.2 Pi vs Claude Code

The most common migration path. Key differences:

Why people switch: - Token efficiency: "My token limits last 10x longer" (Ewald Benes) - No hidden context injection - No
flickering TUI - System prompt doesn't change on every release - Multi-model support - Session branching

What you lose: - Built-in permission system - Native MCP support - Anthropic-optimized tool calling - Larger community and
ecosystem - Enterprise features (SSO, audit logs)

From r/ClaudeCode:

The selling point of pi is its simplicity. It lacks a lot of fancy features, but that means you get the smallest starting context out
there, and you don't pay for things like 'plan mode' or 'todo' -- you just have to do the crazy complicated thing of telling it:
make a plan if you want to plan something.

-25/42 - CC BY-SA 4.0



9.3 Pi vs Amp

9.3 Pivs Amp

Amp is the closest competitor in philosophy (focused threads, quality over features).

Amp advantages: - Oracle is deeply integrated (auto-invoked, optimized token flow) - Handoff auto-generates focused prompts -
Thread mentioning ( @thread-id ) - Thread Map for visual navigation - Server-side thread management - Polished VS Code
extension

Pi advantages: - Full multi-model freedom (Amp locks you to Anthropic + OpenAl) - Self-extending agent (Amp can't build its
own tools) - Open source (MIT) - No vendor lock-in - Smaller context footprint - Community-driven extension ecosystem

9.4 Pivs OpenCode

OpenCode (by SST) takes the "everything" approach.

OpenCode advantages: - Built-in MCP support - LSP integration (semantic code intelligence) - Built-in web fetch tool - Go
binary (no Node.js dependency)

Pi advantages: - Smaller core, less context overhead - Extension system is far more powerful - Session branching (OpenCode is
linear) - Cross-provider context handoff - Self-extending capability

9.5 Pi vs Aider

Aider is even more minimal than pi -- it only reads and edits code.

Aider advantages: - Git-native (auto-commits, diff-based editing) - Repository map for large codebases - No bash tool (can't
accidentally break things)

Pi advantages: - Bash tool (can run tests, install deps, debug) - Extension system - Session branching - TUI with rich rendering -
Multi-mode (interactive, print, RPC, SDK)

9.6 The Armin Ronacher Perspective

From his blog post comparing Pi and Amp:

Pi is interesting to me because of two main reasons. First of all, it has a tiny core. It has the shortest system prompt of any agent
that I'm aware of and it only has four tools. The second thing is that it makes up for its tiny core by providing an extension
system that also allows extensions to persist state into sessions, which is incredibly powerful.

And a little bonus: Pi itself is written like excellent software. It doesn't flicker, it doesn't consume a lot of memory, it doesn't
randomly break, it is very reliable and it is written by someone who takes great care of what goes into the software.

-26/42 - CC BY-SA 4.0



10. Limitations and Gaps

10. Limitations and Gaps

An honest assessment of pi's current drawbacks. These are real tradeoffs, not dealbreakers -- but the team should be aware of
them.

10.1 No Native Cross-Session References

You cannot @mention another session from within a session. Amp's thread mentioning and "Amp Now Reads Threads" feature has
no equivalent. Workarounds exist (read the JSONL file, build a /recall extension), but it's not first-class.

10.2 No Built-in Permission System

YOLO mode means the agent executes everything without asking. For teams working on production systems, this requires
discipline:

¢ Run in a container or sandboxed environment
e Use a dedicated user account (useradd claude )
* Build a permission gate extension (examples exist)

* Or install the community plan-mode extension for read-only exploration
From r/ClaudeCode:

It only supports yolo mode, which is honestly fine but if you want security just use linux and useradd claude and use that so it
can't access your own home directory.

10.3 No IDE Integration

Pi is terminal-only. There's no VS Code extension, no JetBrains plugin, no native GUI. The closest alternatives:

* Emacs mode ( dnouri/pi-coding-agent ) -- community-built, works well
* RPC mode for building custom integrations

* SDK for embedding in your own apps

If your team relies heavily on IDE features (inline diffs, gutter annotations, hover previews), pi won't replace that workflow.

10.4 Steeper Learning Curve for Non-Terminal Users

Pi assumes comfort with: - Terminal workflows - Shell commands and Unix tools - TypeScript (for writing extensions) - Managing
API keys and provider configuration

There's no guided onboarding, no wizard, no "just works" setup. You need to configure providers, understand the session model,
and learn the commands.

10.5 Extension Quality Varies

Community extensions are maintained by individuals. Unlike Claude Code or Amp where features are tested by a company:

» Extensions may break on pi updates
* No formal review process
e Documentation quality varies

* Some extensions are experimental

-27/42 - CC BY-SA 4.0



10.6 No Built-in Eval/Testing Framework

Always test extensions in a non-critical project first.

10.6 No Built-in Eval/Testing Framework

Unlike Mastra (which has runevals and scorers), pi has no formal way to test agent behavior or tool quality. Testing is manual --
you use the extension and see if it works. For teams that need Cl-ready verification of agent behavior, this is a gap.

10.7 Windows Support is Second-Class
From r/ClaudeCode:
I recommend ditching windows. Saved me my sanity. Agents are constantly doing command syntax mistakes on windows.

Pi works on Windows but the experience is rougher. Linux and macOS are the primary targets.

10.8 No Server-Side Session Management

Sessions are local JSONL files. There's no cloud sync, no team-shared session history, no server-side thread management like
Amp. For distributed teams, this means:

» Sessions live on individual machines
e Sharing requires /export to HTML or /share to GitHub gist

¢ No real-time collaboration on sessions

10.9 No Native Long-Term Memory
Pi doesn't have built-in vector search, RAG, or cross-session memory. The alternatives:

* AGENTS.md for project-level persistent instructions
* memory-mode extension to save learnings to AGENTS.md
* Build a RAG extension (the hooks exist, but you build it yourself)

» Session branching partially compensates (you can revisit old decisions)
From Ewald Benes:

Pi's AGENTS.md for project rules, combined with its session branching, handles 90% of my "memory" needs without the
overhead of a separate manager.

10.10 Small (but Growing) Ecosystem

Pi has 1.2M+ weekly downloads and an active Discord, but the extension ecosystem is still small compared to VS Code or even
Claude Code's community. You may need to build extensions yourself rather than finding pre-built ones.

10.11 The "Un-Google-able" Name

Mario chose the name deliberately to avoid users and issues. It worked. Searching for "pi coding agent" returns results about
Raspberry Pi, the number pi, and various unrelated projects. Always search for "pi-coding-agent" or "shittycodingagent" or
"badlogic/pi-mono".

-28/42 - CC BY-SA 4.0



10.12 No Cloud Workspace

10.12 No Cloud Workspace

Pi is entirely local. There's no cloud-hosted workspace, no web UI you can open from any browser, no always-on server-side
sessions. Claude Code has a web interface. Amp's threads live on their servers. Pi's sessions live on your machine.

This means: - You can't start a session on your laptop and continue it from your phone's browser - There's no team dashboard
showing active sessions - No "always running" agent that works while your machine is off

Pi does run on Android via Termux (see 10-quickstart.md), and you can copy your ~/.pi/agent/ config between machines. But
there's no sync layer -- it's manual file transfer. For teams that want cloud-native agent workflows, this is a real gap compared to
Amp or Claude Code's web offerings.

-29/42 - CC BY-SA 4.0



11. Quick Start and Daily Workflows

11. Quick Start and Daily Workflows

11.1 Installation

npm install -g @mariozechner/pi-coding-agent

Or use a standalone binary (no Node.js required) -- check the GitHub releases.

11.2 Android (Termux) Setup

Pi runs on Android via Termux with zero friction:

1. Install Termux from F-Droid
2. Install Node.js: pkg install nodejs
3. Install pi: npm install -g @mariozechner/pi-coding-agent
4. Copy just your ~/.pi/agent/models.json from your desktop
5. Run pi
That's it -- models.json is the only file you need to bring over. Extensions, skills, and packages can all be installed via CLI

afterwards ( pi install npm:shitty-extensions, etc.). This is one of pi's underrated strengths: because everything is npm packages
and local files, getting productive on a new device takes under a minute.

11.3 Authentication

# Option 1: API key

export ANTHROPIC_API_KEY=sk-ant-...

pi

# Option 2: OAuth subscription (Claude Pro/Max, ChatGPT Plus, Copilot, Gemini)
pi

/login

11.4 First Session

cd your-project
pi

Pi will load any AGenTs.md files from ~/.pi/agent/, parent directories, and the current directory.

-30/42 - CC BY-SA 4.0


https://termux.dev/

11.5 Essential Commands

Command
Ctri+L
Ctrl+P
Shift+Tab
/tree
/fork
/compact
/name <label>
/export
/share
/reload
Ctrl+C
ctri+Cc x2
Escape
Escape X2

Ctrl+0

Action

Switch model

Cycle favorite models
Cycle thinking level
Navigate session tree
Branch to new session
Summarize old context
Label current session
Export to HTML
Upload to GitHub gist
Hot-reload extensions
Clear editor

Quit

Cancel/abort

Open /tree

Collapse/expand tool output

11.6 Editor Features

Feature

File reference
Path completion
Multi-line

Paste images
Run bash inline

Run bash silent

How

Type @ to fuzzy-search project files
Tab

Shift+Enter

Ctrl+V

tcommand (sends output to LLM)

I1command (runs without sending)

11.7 Message Queuing

While the agent is working:

* Enter -- Send steering message (interrupts after current tool)

e Alt+Enter -- Send follow-up (waits until agent finishes)

e Escape -- Abort and restore queued messages

-31/42 -

11.5 Essential Commands

CC BY-SA 4.0



11.8 Recommended Setup

11.8 Recommended Setup

11.8.1 1. Global AGENTS.md

Create ~/.pi/agent/AGENTS.md with your universal preferences:

# Global Agent Instructions

## Style

- Use TypeScript strict mode

- Prefer functional patterns

- Keep functions under 30 lines

## Tools
- Use pnpm for package management
- Use vitest for testing

11.8.2 2. Project AGENTS.md
Create AGENTS.md in your project root:

# Project: My App

## Stack
- Next.js 15, TypeScript, Tailwind
- Deployed on Vercel

## Conventions

- Components in src/components/

- API routes in src/app/api/

- Use server actions for mutations

11.8.3 3. Install Community Extensions

# Oracle + handoff + plan mode + more
pi install npm:shitty-extensions

# Model switching with aliases
pi install npm:pi-model-switch

11.8.4 4. Configure Model Aliases
Create ~/.pi/agent/extensions/model-switch/aliases.json :

{
"cheap": "google/gemini-2.5-flash",
"coding": "anthropic/claude-sonnet-4-20250514",
"review": "openai/gpt-5.2"

11.9 Daily Workflow Patterns
11.9.1 Focused Task

pi
> "Implement the user authentication flow using NextAuth.js"
# Agent works autonomously until done

11.9.2 Exploration + Branch

pi

> "Explore two approaches for the caching layer"
# Agent explores approach A

/tree # Go back to before approach A

> "Now try approach B using Redis instead"

# Compare both branches

-32/42 - CC BY-SA 4.0



11.9.3 Multi-Model Brainstorm

11.9.3 Multi-Model Brainstorm

"Design the API schema for the notification service"
Claude designs it

"Switch to review model"

"Review the schema design, find edge cases"

GPT-5.2 reviews

"Switch to coding model"

"Implement the schema based on the review feedback"

V V3%V VIV

11.9.4 Handoff Between Sessions

> "Plan the migration from REST to GraphQL"

# Agent creates the plan

/handoff implement phase 1 of the migration plan
# New session starts with focused context

11.9.5 Resume Previous Work

pi -c # Continue most recent session
pi -r # Browse all sessions, pick one

-33/42 - CC BY-SA 4.0



12. Code Snippets Reference

12. Code Snippets Reference

Concrete code examples referenced throughout the handbook.

12.1 Extension: Permission Gate
Block dangerous bash commands with user confirmation:

// ~/.pi/agent/extensions/permission-gate.ts
import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";

const DANGEROUS_PATTERNS = ["rm -rf", "sudo", "DROP TABLE", "format", "mkfs"]

export default function (pi: ExtensionAPI) {
pi.on("tool_call", async (event, ctx) => {
if (event.toolName !== "bash") return;

const cmd = event.input.command || "";
const match = DANGEROUS_PATTERNS.find((p) => cmd.includes(p));

if (match) {
const ok = await ctx.ui.confirm(
"Dangerous Command",
“Command contains "${match}":\n${cmd}\n\nAllow?"
)i
if (!ok) return { block: true, reason: "Blocked: contains ${match}" };
}
1
}

12.2 Extension: Oracle (Simplified)
Consult a second model for review and brainstorming:

// ~/.pi/agent/extensions/oracle.ts

import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { Type } from "@sinclair/typebox";

import { getModel, stream } from "@mariozechner/pi-ai";

export default function (pi: ExtensionAPI) {
pi.registerTool({

name: "oracle",

label: "Oracle",

description: “Consult a second model for review, debugging, or brainstorming.
The oracle analyzes and advises but doesn't make changes. ",

parameters: Type.Object({
question: Type.String({ description: "What to ask the oracle" }),
context: Type.String({ description: "Relevant code or situation summary" }),

1.

async execute(toolCallIld, params, signal, onUpdate, ctx) {
const oracle = getModel("openai", "gpt-5.2");

const response = await stream(
oracle,
{
system: “You are a senior engineering oracle. You review, analyze,
and advise. You do NOT write code directly.’,
messages: [
{
role: "user",
content: “${params.context}\n\n${params.question}’,
3
1,
i
{ apiKey: process.env.OPENAI_API_KEY! }
)i

return {
content: [{ type: "text", text: await response.text }],
details: { model: "gpt-5.2", role: "oracle" },
}
}
1)
}

-34/42 - CC BY-SA 4.0



12.3 Extension: Session Recall

12.3 Extension: Session Recall

Read and summarize another session (cross-session reference):

// ~/.pi/agent/extensions/recall.ts

import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { readFileSync, readdirSync } from "node:fs";

import { join } from "node:path";

import { homedir } from "node:os";

export default function (pi: ExtensionAPI) {
pi.registerCommand("recall”, {
description: "Load summary of another session by ID"
handler: async (sessionId, ctx) => {
if (!sessionId) {

ctx.ui.notify("Usage: /recall <session-id>", "error");
return;
}
const sessionsDir = join(homedir(), ".pi", "agent", "sessions");

// Search all project directories for the session
const projects = readdirSync(sessionsDir);

for (const project of projects) {
const projectDir = join(sessionsDir, project);
const files = readdirSync(projectDir).filter((f) =>
f.startsWith(sessionId)

)i

if (files.length > 0) {
const content = readFileSync(join(projectDir, files[0]), "utf-8");
const lines = content.split("\n").filter(Boolean);
const messages = lines
.map( (1) => JSON.parse(l))
.filter(
(e) => e.type =
)

.slice(-5); // Last 5 assistant messages

"message" && e.message?.role === "assistant"

const summary = messages
.map((m) =>
m.message.content
.filter((c: any) => c.type =
.map((c: any) => c.text)
.join("")

"text™")

)

.join("\n---\n");

ctx.ui.notify(
“Loaded session ${sessionId} from ${project}’,
"success"

)i

// Inject as context for next turn

return { inject: summary };

ctx.ui.notify( Session ${sessionId} not found®, "error");
}
1
}

12.4 Skill: Web Search (CLI-based)

A skill file that teaches the agent to use a CLI search tool:
<!-- .pi/skills/web-search/SKILL.md -->
# Web Search
Search the web and fetch page content using CLI tools.
## Tools
### search
Search the web: “search "your query" --max-results 5°
Returns: title, URL, snippet for each result.
### fetch
Read a web page: “fetch <url> --format text --max-chars 5000°
Returns: page content as plain text.
## Usage Pattern
1. Search for information: “search "topic"®
2. Read promising results: “fetch <url>"

3. Synthesize findings for the user

## Notes

- 35/42 - CC BY-SA 4.0



12.5 AGENTS.md Template

- Prefer specific queries over broad ones
- Fetch only the pages that look relevant from search results
- Summarize rather than dumping raw content

12.5 AGENTS.md Template

# AGENTS.md

## Project

- Name: [project name]

- Stack: [e.g., Next.js 15, TypeScript, Tailwind, Drizzle ORM]
- Deployed on: [e.g., Vercel, Cloudflare Workers]

## Conventions

- Use pnpm for package management
- Use strict TypeScript

- Components in src/components/

- Keep functions under 30 lines

- Write tests for business logic

## Model Preferences

- Simple file ops / quick questions: switch to "cheap"

- Complex refactoring / architecture: switch to "coding"

- Code review: switch to "review"

- Default to budget-friendly models unless quality is needed

## Do Not
- Commit credentials or .env files

- Modify files in node_modules/
- Run destructive commands without confirmation

12.6 Custom Provider Configuration

// ~/.pi/agent/models.json

"providers": [

{
"id": "my-ollama",
"name": "Local Ollama"
"api": "openai-completions"
"baseUrl": "http://localhost:11434/v1"
"models": [
{
"id": "llama-3.1-76b",
"name": "Llama 3.1 70B"
"contextWindow": 128000,
"maxTokens": 32000,
"reasoning": false,
"input": ["text"]
}
]
}

-36/42 - CC BY-SA 4.0



13. Official References

13. Official References

Direct links to pi's official documentation, source code, and community resources.

13.1 Core Documentation

Document URL

README (main docs) https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/README.md

Extensions guide
Skills guide
Session format
Packages guide
Themes guide
Prompt templates
Keybindings
Custom providers
Adding models
RPC mode

SDK usage

TUI components

https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/extensions.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/skills.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/session.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/packages.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/themes.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/prompt-templates.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/keybindings.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/custom-provider.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/models.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/rpc.md
https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/sdk.md

https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/tui.md

13.2 Extension Examples (50+)

https://github.com/badlogic/pi-mono/tree/main/packages/coding-agent/examples/extensions

Notable examples in the repo: - summarize.ts -- Conversation summaries - snake.ts -- Snake game (TUI demo) - async-subagent/
-- Sub-agent implementation - Various permission gate patterns

13.3 Source Code

Package Path

pi-ai (LLM API) https://github.com/badlogic/pi-mono/tree/main/packages/ai
pi-agent-core https://github.com/badlogic/pi-mono/tree/main/packages/agent
pi-coding-agent https://github.com/badlogic/pi-mono/tree/main/packages/coding-agent
pi-tui https://github.com/badlogic/pi-mono/tree/main/packages/tui

pi-web-ui https://github.com/badlogic/pi-mono/tree/main/packages/web-ui
pi-mom (Slack bot) https://github.com/badlogic/pi-mono/tree/main/packages/mom

pi-pods (VLLM) https://github.com/badlogic/pi-mono/tree/main/packages/pods

-37/42 - CC BY-SA 4.0



13.4 Community Packages

13.4 Community Packages
Package npm GitHub
shitty-extensions npm:shitty-extensions https://github.com/hjanuschka/shitty-extensions
pi-model-switch npm:pi-model-switch https://github.com/nicobailon/pi-model-switch
pi-subagent-enhanced - https://github.com/nicobailon/pi-subagent-enhanced
@marckrenn/pi-sub-core npm:@marckrenn/pi-sub-core https://github.com/marckrenn/pi-sub
pi-skills (official) git:github.com/badlogic/pi-skills https://github.com/badlogic/pi-skills
pi-coding-agent (Emacs) MELPA https://github.com/dnouri/pi-coding-agent

13.5 CLI Tools (Mario's agent-tools)

https://github.com/badlogic/agent-tools

CLI tools designed for agent use with READMESs the agent reads on demand.

13.6 Blog Posts and Articles

Title Author URL

What I learned building an opinionated Mario Zechner https://mariozechner.at/posts/2025-11-30-pi-coding-

and minimal coding agent agent/

MCP vs CLI: Benchmarking Tools for Mario Zechner https://mariozechner.at/posts/2025-08-15-mcp-vs-cli/

Coding Agents

Pi: The Minimal Agent Within OpenClaw Armin Ronacher https://lucumr.pocoo.org/2026/1/31/pi/

Why I Switched to Pi Helmut https://www.januschka.com/pi-coding-agent.html
Januschka

The Only Coding Agent You'll Ever Need Ewald Benes https://ewaldbenes.com/en/blog/the-only-coding-agent-

you-ll-ever-need

An Emacs mode for a shitty coding agent Daniel Nouri https://danielnouri.org/notes/2025/12/30/an-emacs-
mode-for-a-shitty-coding-agent/

Your MCP Doesn't Need 30 Tools: It Armin Ronacher https://lucumr.pocoo.org/2025/8/18/code-mcps/
Needs Code
Replace MCP With CLI Cobus Greyling https://cobusgreyling.substack.com/p/replace-mcp-with-

cli-the-best-ai

13.7 Community Discussions

Thread Platform

Change your coding agent to pi https://www.reddit.com/r/ClaudeCode/comments/1qu5fad/
Why I switched from Claude Code to Pi https://www.reddit.com/r/ClaudeCode/comments/1rllegp/
HN discussion on Mario's blog post https://news.ycombinator.com/item?id=46844822
pi-coding-agent in Emacs https://www.reddit.com/r/emacs/comments/1ga8xql/

-38/42 - CC BY-SA 4.0



13.8 DeepWiki (Al-generated docs from source)

13.8 DeepWiki (Al-generated docs from source)

https://deepwiki.com/badlogic/pi-mono/4-@mariozechnerpi-coding-agent

-39/42 - CC BY-SA 4.0



14. Contributing

14. Contributing

This handbook is a community project. No contribution is too small.

14.1 What we're looking for

» Typo fixes, grammar improvements, broken links

* Better code examples or updated snippets

* New sections, tips, or workflow patterns you've discovered

* Extensions or skills you've built — write them up, share the code
* Corrections to anything that's wrong or outdated

* Screenshots, terminal recordings, or diagrams

* Translations

The Limitations page documents known gaps. Building solutions for those and writing them up here is the highest-impact work
you can do.

14.2 How to contribute

1. Fork sparticle9/pi-handbook
2. Edit or add markdown files in docs/

3. Open a PR with a short description of what you changed and why

That's it. No build step required — the site deploys automatically on merge.

14.3 Guidelines

* Write in plain, direct English. No fluff, no hype.

* Be honest about limitations. Don't oversell pi or undersell alternatives.
» All quotes must be attributed with source links.

» Keep code snippets runnable and minimal.

e Use MkDocs Material admonitions for callouts:

11 tip
This is a tip.

11!l warning
This is a warning.

* New chapters go in docs/ and must be added to nav: in mkdocs.yml.

* When comparing tools, be fair. State facts, cite sources.

14.4 Local preview

pip install mkdocs-material
mkdocs serve
# http://localhost:8000

-40/42 - CC BY-SA 4.0


https://github.com/sparticle9/pi-handbook

14.5 What not to do

14.5 What not to do

* Don't add vendor-specific promotional content
* Don't commit credentials or API keys
* Don't use Al-generated filler text

e Don't remove the disclaimer about unofficial status

14.6 License

Content is licensed under CC BY-SA 4.0. By contributing, you agree to license your work under the same terms.

-41/42 - CC BY-SA 4.0


https://creativecommons.org/licenses/by-sa/4.0/

15. Download

15. Download

Get the full handbook as a single PDF for offline reading.

Download PDF

The PDF is regenerated automatically on every push to main .

-42/42 - CC BY-SA 4.0


/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf

	Pi Coding Agent Handbook
	1. Pi Coding Agent Handbook
	1.1 What's inside
	1.2 Get involved
	1.3 Chapters
	1.4 Key references

	2. Core Philosophy
	2.1 The Minimal Core
	2.2 Context Engineering as First Principle
	2.3 Primitives, Not Features
	2.4 Software That Builds Itself
	2.5 The "What We Didn't Build" List
	2.6 YOLO by Default

	3. Architecture and Four Tools
	3.1 The Monorepo
	3.2 Four Tools
	3.3 Four Execution Modes
	3.4 Context Control Stack
	3.5 Session Format

	4. Extension System
	4.1 Capabilities
	4.2 Quick Start
	4.3 Extension Locations
	4.4 Event Lifecycle
	4.5 Skills vs Extensions
	4.6 Pi Packages
	4.7 Self-Extending Agent

	5. Session Management
	5.1 Core Concepts
	5.2 Key Commands
	5.3 In-Session Navigation
	5.4 Branching Workflow
	5.5 Compaction
	5.6 Cross-Project Sessions
	5.7 Comparison with Amp's Thread Model

	6. Multi-Model Freedom
	6.1 Supported Providers
	6.2 Switching Models
	6.3 Context Handoff
	6.4 Model Aliases (via pi-model-switch extension)
	6.5 Custom Providers
	6.6 Scoped Models
	6.7 Practical Workflow

	7. No MCP: The CLI-First Philosophy
	7.1 The Problem with MCP
	7.2 The CLI Alternative
	7.3 The Benchmark
	7.4 If You Must Use MCP
	7.5 The Deeper Argument
	7.6 Community Perspective
	7.7 The Counter-Argument: MCP Is Evolving

	8. Community Extensions
	8.1 shitty-extensions (by hjanuschka)
	8.1.1 Oracle Usage
	8.1.2 Handoff Usage

	8.2 pi-model-switch (by nicobailon)
	8.3 pi-subagent-enhanced (by nicobailon)
	8.4 @marckrenn/pi-sub-core
	8.5 pi-skills (by Mario Zechner)
	8.6 Armin Ronacher's Extensions (referenced in his blog)
	8.7 Notable Community Integrations
	8.8 Finding More Packages

	9. Comparison with Other Agents
	9.1 Overview Matrix
	9.2 Pi vs Claude Code
	9.3 Pi vs Amp
	9.4 Pi vs OpenCode
	9.5 Pi vs Aider
	9.6 The Armin Ronacher Perspective

	10. Limitations and Gaps
	10.1 No Native Cross-Session References
	10.2 No Built-in Permission System
	10.3 No IDE Integration
	10.4 Steeper Learning Curve for Non-Terminal Users
	10.5 Extension Quality Varies
	10.6 No Built-in Eval/Testing Framework
	10.7 Windows Support is Second-Class
	10.8 No Server-Side Session Management
	10.9 No Native Long-Term Memory
	10.10 Small (but Growing) Ecosystem
	10.11 The "Un-Google-able" Name
	10.12 No Cloud Workspace

	11. Quick Start and Daily Workflows
	11.1 Installation
	11.2 Android (Termux) Setup
	11.3 Authentication
	11.4 First Session
	11.5 Essential Commands
	11.6 Editor Features
	11.7 Message Queuing
	11.8 Recommended Setup
	11.8.1 1. Global AGENTS.md
	11.8.2 2. Project AGENTS.md
	11.8.3 3. Install Community Extensions
	11.8.4 4. Configure Model Aliases

	11.9 Daily Workflow Patterns
	11.9.1 Focused Task
	11.9.2 Exploration + Branch
	11.9.3 Multi-Model Brainstorm
	11.9.4 Handoff Between Sessions
	11.9.5 Resume Previous Work


	12. Code Snippets Reference
	12.1 Extension: Permission Gate
	12.2 Extension: Oracle (Simplified)
	12.3 Extension: Session Recall
	12.4 Skill: Web Search (CLI-based)
	12.5 AGENTS.md Template
	12.6 Custom Provider Configuration

	13. Official References
	13.1 Core Documentation
	13.2 Extension Examples (50+)
	13.3 Source Code
	13.4 Community Packages
	13.5 CLI Tools (Mario's agent-tools)
	13.6 Blog Posts and Articles
	13.7 Community Discussions
	13.8 DeepWiki (AI-generated docs from source)

	14. Contributing
	14.1 What we're looking for
	14.2 How to contribute
	14.3 Guidelines
	14.4 Local preview
	14.5 What not to do
	14.6 License

	15. Download

