
Pi Coding Agent Handbook

An unofficial community handbook

Pi Handbook Community

CC BY-SA 4.0

Table of contents

61. Pi Coding Agent Handbook

61.1 What's inside

61.2 Get involved

71.3 Chapters

71.4 Key references

82. Core Philosophy

82.1 The Minimal Core

82.2 Context Engineering as First Principle

82.3 Primitives, Not Features

82.4 Software That Builds Itself

92.5 The "What We Didn't Build" List

92.6 YOLO by Default

103. Architecture and Four Tools

103.1 The Monorepo

103.2 Four Tools

103.3 Four Execution Modes

103.4 Context Control Stack

113.5 Session Format

124. Extension System

124.1 Capabilities

124.2 Quick Start

134.3 Extension Locations

134.4 Event Lifecycle

134.5 Skills vs Extensions

134.6 Pi Packages

144.7 Self-Extending Agent

155. Session Management

155.1 Core Concepts

155.2 Key Commands

155.3 In-Session Navigation

155.4 Branching Workflow

165.5 Compaction

165.6 Cross-Project Sessions

165.7 Comparison with Amp's Thread Model

Table of contents

- 2/42 - CC BY-SA 4.0

176. Multi-Model Freedom

176.1 Supported Providers

176.2 Switching Models

176.3 Context Handoff

176.4 Model Aliases (via pi-model-switch extension)

186.5 Custom Providers

186.6 Scoped Models

186.7 Practical Workflow

197. No MCP: The CLI-First Philosophy

197.1 The Problem with MCP

197.2 The CLI Alternative

197.3 The Benchmark

207.4 If You Must Use MCP

207.5 The Deeper Argument

207.6 Community Perspective

207.7 The Counter-Argument: MCP Is Evolving

228. Community Extensions

228.1 shitty-extensions (by hjanuschka)

228.2 pi-model-switch (by nicobailon)

238.3 pi-subagent-enhanced (by nicobailon)

238.4 @marckrenn/pi-sub-core

238.5 pi-skills (by Mario Zechner)

238.6 Armin Ronacher's Extensions (referenced in his blog)

248.7 Notable Community Integrations

248.8 Finding More Packages

259. Comparison with Other Agents

259.1 Overview Matrix

259.2 Pi vs Claude Code

269.3 Pi vs Amp

269.4 Pi vs OpenCode

269.5 Pi vs Aider

269.6 The Armin Ronacher Perspective

2710. Limitations and Gaps

2710.1 No Native Cross-Session References

2710.2 No Built-in Permission System

2710.3 No IDE Integration

2710.4 Steeper Learning Curve for Non-Terminal Users

2710.5 Extension Quality Varies

Table of contents

- 3/42 - CC BY-SA 4.0

2810.6 No Built-in Eval/Testing Framework

2810.7 Windows Support is Second-Class

2810.8 No Server-Side Session Management

2810.9 No Native Long-Term Memory

2810.10 Small (but Growing) Ecosystem

2810.11 The "Un-Google-able" Name

2910.12 No Cloud Workspace

3011. Quick Start and Daily Workflows

3011.1 Installation

3011.2 Android (Termux) Setup

3011.3 Authentication

3011.4 First Session

3111.5 Essential Commands

3111.6 Editor Features

3111.7 Message Queuing

3211.8 Recommended Setup

3211.9 Daily Workflow Patterns

3412. Code Snippets Reference

3412.1 Extension: Permission Gate

3412.2 Extension: Oracle (Simplified)

3512.3 Extension: Session Recall

3512.4 Skill: Web Search (CLI-based)

3612.5 AGENTS.md Template

3612.6 Custom Provider Configuration

3713. Official References

3713.1 Core Documentation

3713.2 Extension Examples (50+)

3713.3 Source Code

3813.4 Community Packages

3813.5 CLI Tools (Mario's agent-tools)

3813.6 Blog Posts and Articles

3813.7 Community Discussions

3913.8 DeepWiki (AI-generated docs from source)

4014. Contributing

4014.1 What we're looking for

4014.2 How to contribute

4014.3 Guidelines

4014.4 Local preview

Table of contents

- 4/42 - CC BY-SA 4.0

4114.5 What not to do

4114.6 License

4215. Download

Table of contents

- 5/42 - CC BY-SA 4.0

1. Pi Coding Agent Handbook

Agentic coding is probably the best thing that's happened since the ChatGPT moment. These tools are how individual builders

ship software that used to take teams — and the more we push them, the more high-quality personal software the world gets.

That matters.

I've been through the cycle — Aider, Cursor, Claude Code, Amp, OpenCode, Codex, Goose, Kiro, Kilo, Roo — the list goes on. I

still use many of them daily. I'd already cut most of my Claude Code time once Amp came along, but with pi I'm feeling like I

could finally stop reaching for it altogether.

Let me be honest about one thing. Claude Code is innovative. It was mindblowing for a long time and it's still pushing forward. I

respect what it's done for this space. I just don't like its arrogance. That's personal, and you're welcome to disagree. Pi is the

opposite — humble, minimal, and trusts you to drive. That's the energy I want to build with.

This handbook is what I wish existed when I started with pi. It covers the philosophy, the architecture, the extension system, the

tradeoffs, and the honest gaps. It's opinionated because pi is opinionated, and that's the point.

I don't claim to be an expert. I'm just a builder who got hooked and wanted to write things down. If something here is wrong,

outdated, or could be said better — please fix it. This is your handbook too.

1.1 What's inside

The core argument for pi, the four-tool architecture, how extensions replace features other agents bake in, the no-MCP stance

(and why MCP 2.0 might change the calculus), community packages like oracle and handoff, a fair comparison with Claude

Code / Amp / OpenCode / Aider, and a quick start that gets you running on macOS, Linux, or Android via Termux.

12 chapters. Code snippets. Every claim sourced.

1.2 Get involved

This handbook lives or dies by contributions. A typo fix, a better code example, a one-paragraph tip, a whole new chapter — it all

counts. The Limitations page is full of gaps waiting to be filled. Every one of them is an open invitation.

If you've built something with pi — an extension, a workflow, a workaround — write it up. Someone out there is stuck on the

exact problem you solved last week. We're especially interested in patterns for using pi as a general agent orchestrator —

coordinating sub-agents, chaining tasks, making the build process more fun, not just more productive.

 Contribute Download PDF

This is an unofficial community handbook. It is not affiliated with or endorsed by Mario Zechner or the pi project. All quotes are

attributed to their original authors and linked to their sources. Pi is MIT licensed.

Disclaimer

1. Pi Coding Agent Handbook

- 6/42 - CC BY-SA 4.0

/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
https://github.com/badlogic/pi-mono/blob/main/LICENSE

1.3 Chapters

1.4 Key references

Chapter What you'll learn

1 Core Philosophy Why pi exists, what it deliberately omits

2 Architecture The minimal core: read, write, edit, bash

3 Extension System TypeScript extensions, skills, packages

4 Session Management Tree-structured branching, compaction

5 Multi-Model Freedom 15+ providers, mid-session switching

6 No MCP The CLI-first philosophy and its tradeoffs

7 Community Extensions Oracle, handoff, sub-agents, and more

8 Comparison Pi vs Claude Code vs Amp vs others

9 Limitations Honest assessment of current gaps

10 Quick Start Installation, config, daily workflows

Code Snippets Concrete extension and config examples

References Official docs, community links, articles

Resource Link

Website shittycodingagent.ai

GitHub badlogic/pi-mono

npm @mariozechner/pi-coding-agent

Mario's blog What I learned building a minimal coding agent

MCP vs CLI benchmark MCP vs CLI: Benchmarking Tools

Armin Ronacher Pi: The Minimal Agent Within OpenClaw

1.3 Chapters

- 7/42 - CC BY-SA 4.0

https://shittycodingagent.ai
https://github.com/badlogic/pi-mono
https://www.npmjs.com/package/@mariozechner/pi-coding-agent
https://mariozechner.at/posts/2025-11-30-pi-coding-agent/
https://mariozechner.at/posts/2025-08-15-mcp-vs-cli/
https://lucumr.pocoo.org/2026/1/31/pi/

2. Core Philosophy

Pi's design is guided by a single principle: if I don't need it, it won't be built.

Mario Zechner built pi because existing agents (Claude Code, Cursor, Codex) kept adding features he didn't use, injecting hidden

context he couldn't inspect, and changing behavior on every release. Pi is his answer: a coding agent that is aggressively

minimal, fully transparent, and extensible by the user -- not the vendor.

2.1 The Minimal Core

Pi ships with exactly four tools: read , write , edit , bash . That's it. No plan mode, no sub-agents, no MCP, no permission popups,

no built-in to-dos, no background bash.

From the website:

Pi is aggressively extensible so it doesn't have to dictate your workflow. Features that other tools bake in can be built with

extensions, skills, or installed from third-party pi packages. This keeps the core minimal while letting you shape pi to fit how you

work.

2.2 Context Engineering as First Principle

Pi has the shortest system prompt of any coding agent. This matters because every token in the system prompt competes with

your actual code and instructions for the model's attention.

From Ewald Benes (r/ClaudeCode):

By default, tools like Claude Code inject a massive amount of hidden text before your prompt even begins. This "bloat" burns

through thousands of tokens before you've typed a single word. The creators of these tools make dozens of architectural

decisions for you -- whether you want them or not -- which often leads to the LLM becoming "distracted" by its own internal

instructions.

Pi's approach: give the model the minimum it needs, and let the user control what else goes in via AGENTS.md, SYSTEM.md,

skills, and extensions.

2.3 Primitives, Not Features

Instead of building plan mode, pi gives you extensions. Instead of building sub-agents, pi gives you extensions. Instead of

building MCP support, pi gives you bash + skills.

From Armin Ronacher:

This is not a lazy omission. This is from the philosophy of how Pi works. Pi's entire idea is that if you want the agent to do

something that it doesn't do yet, you don't go and download an extension or a skill or something like this. You ask the agent to

extend itself. It celebrates the idea of code writing and running code.

2.4 Software That Builds Itself

Pi ships with its own documentation and extension examples that the agent can read. This means you can literally tell pi: "Build

me an extension that does X" and it will read the docs, write the extension, hot-reload it, test it, and iterate until it works.

From Armin Ronacher:

It also ships with documentation and examples that the agent itself can use to extend itself. Even better: sessions in Pi are trees.

You can branch and navigate within a session which opens up all kinds of interesting opportunities such as enabling workflows

for making a side-quest to fix a broken agent tool without wasting context in the main session.

2. Core Philosophy

- 8/42 - CC BY-SA 4.0

2.5 The "What We Didn't Build" List

2.6 YOLO by Default

Pi runs in "YOLO mode" -- it executes tools without asking for permission. This is a deliberate choice. Mario's argument: if the

agent can write and run code, security theater (confirmation dialogs) doesn't actually protect you. If you want safety, use a

container or build a real permission gate via extensions.

From the blog post:

If you look at the security measures in other coding agents, they're mostly security theater. As soon as your agent can write code

and run code, it's pretty much game over.

Feature Pi's stance Alternative

MCP Will not support CLI tools + READMEs, or mcporter

Sub-agents Not built-in Extensions, tmux, or community packages

Plan mode Not built-in Just tell it "make a plan", or install an extension

Permission popups Not built-in Run in container, or build confirmation extension

To-do tracking Not built-in Use TODO.md, or build a tool extension

Background bash Not built-in Use tmux for full observability

2.5 The "What We Didn't Build" List

- 9/42 - CC BY-SA 4.0

3. Architecture and Four Tools

3.1 The Monorepo

Pi is built as a monorepo (badlogic/pi-mono) with cleanly separated packages:

3.2 Four Tools

The agent has exactly four built-in tools:

That's the entire tool surface. Everything else is built on top via extensions.

Why only four? Because these are the primitives that cover 95% of coding tasks. More tools means more token overhead in the

system prompt, more confusion for the model, and more things that can break between releases.

3.3 Four Execution Modes

3.4 Context Control Stack

Pi provides multiple layers for controlling what enters the model's context:

The key insight: skills are loaded on-demand (the agent reads the README only when relevant), which means you pay the token

cost only when needed. This is "progressive disclosure" -- the opposite of MCP, which dumps all tool descriptions into context at

session start.

Package Purpose

pi-ai Unified LLM API across 4 wire protocols (OpenAI Completions, OpenAI Responses, Anthropic Messages,

Google Generative AI)

pi-agent-core Agent loop, tool execution, event streaming

pi-tui Terminal UI framework with differential rendering, flicker-free output

pi-coding-agent The CLI that wires it all together

pi-mom Slack bot / autonomous agent built on pi

pi-web-ui Web-based chat interface components

pi-pods vLLM pod management for self-hosting

read -- Read file contents (text and images)
write -- Create or overwrite files
edit -- Surgical find-and-replace edits
bash -- Execute shell commands

Interactive -- Full TUI experience (default)
Print/JSON -- pi -p "query" for scripts, --mode json for event streams
RPC -- JSON protocol over stdin/stdout for non-Node integrations
SDK -- Embed pi in your own apps (how OpenClaw is built)

SYSTEM.md -- Replace or append to the default system prompt (per-project)
AGENTS.md -- Project instructions, loaded from ~/.pi/agent/, parent dirs, and cwd
Skills -- On-demand capability packages (progressive disclosure)
Prompt templates -- Reusable prompts as markdown files (/name to expand)
Extensions -- Dynamic context injection, RAG, message filtering, compaction

3. Architecture and Four Tools

- 10/42 - CC BY-SA 4.0

3.5 Session Format

Sessions are JSONL files with a tree structure. Each entry has an id and parentId , enabling in-place branching without creating

new files. The format supports:

User messages, assistant messages, tool results

Bash execution records (command, output, exit code)

Custom messages (extension state, persisted across restarts)

Branch summaries and compaction summaries

Full token usage and cost tracking per message

See 04-sessions.md for details.

•

•

•

•

•

3.5 Session Format

- 11/42 - CC BY-SA 4.0

4. Extension System

Pi's extension system is its most powerful differentiator. Extensions are TypeScript modules that can hook into every aspect of

the agent's lifecycle.

4.1 Capabilities

Register custom tools the LLM can call

Intercept and block/modify tool calls (permission gates)

Inject context before each turn (RAG, memory)

Filter and transform message history

Customize compaction behavior

Register slash commands (/mycommand)

Register keyboard shortcuts

Render custom TUI components (dashboards, pickers, overlays)

Persist state into sessions (survives restarts)

Register CLI flags

4.2 Quick Start

Create ~/.pi/agent/extensions/my-extension.ts :

Test without installing:

•

•

•

•

•

•

•

•

•

•

import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { Type } from "@sinclair/typebox";

export default function (pi: ExtensionAPI) {
// React to events
pi.on("session_start", async (_event, ctx) => {

ctx.ui.notify("Extension loaded!", "info");
});

// Block dangerous commands
pi.on("tool_call", async (event, ctx) => {

if (event.toolName === "bash" && event.input.command?.includes("rm -rf")) {
const ok = await ctx.ui.confirm("Dangerous!", "Allow rm -rf?");
if (!ok) return { block: true, reason: "Blocked by user" };

}
});

// Register a custom tool
pi.registerTool({

name: "greet",
label: "Greet",
description: "Greet someone by name",
parameters: Type.Object({

name: Type.String({ description: "Name to greet" }),
}),
async execute(toolCallId, params, signal, onUpdate, ctx) {

return {
content: [{ type: "text", text: `Hello, ${params.name}!` }],
details: {},

};
},

});

// Register a command
pi.registerCommand("hello", {

description: "Say hello",
handler: async (args, ctx) => {

ctx.ui.notify(`Hello ${args || "world"}!`, "info");
},

});
}

pi -e ./my-extension.ts

4. Extension System

- 12/42 - CC BY-SA 4.0

Hot-reload after changes:

4.3 Extension Locations

4.4 Event Lifecycle

4.5 Skills vs Extensions

Skills are ideal for teaching the agent how to use a CLI tool or follow a convention. Extensions are for when you need

programmatic control.

4.6 Pi Packages

Bundle extensions, skills, prompts, and themes as npm or git packages:

/reload

Location Scope

~/.pi/agent/extensions/*.ts Global (all projects)

~/.pi/agent/extensions/*/index.ts Global (subdirectory)

.pi/extensions/*.ts Project-local

.pi/extensions/*/index.ts Project-local (subdirectory)

session_start
 |
 v
input --> before_agent_start --> agent_start
 |
 +-- turn_start
 | +-- context (can modify messages)
 | +-- tool_call (can block/modify)
 | +-- tool_result (can transform output)
 +-- turn_end
 |
 v
agent_end --> (next user input)

Skills Extensions

Format Markdown files TypeScript modules

Loaded On-demand by the agent At startup

Purpose Instructions + conventions Tools + behavior + UI

Token cost Only when relevant Tool descriptions always in context

Sharing Pi packages Pi packages

Install from npm
pi install npm:shitty-extensions

Install from git
pi install git:github.com/badlogic/pi-doom

Pin version
pi install npm:@foo/bar@1.2.3

Project-local (shared with team via .pi/)
pi install -l npm:shitty-extensions

Try without installing
pi -e npm:shitty-extensions

4.3 Extension Locations

- 13/42 - CC BY-SA 4.0

Packages use the pi-package keyword on npm for discoverability.

4.7 Self-Extending Agent

The most powerful pattern: ask pi to build its own extensions.

Pi will read its own extension docs, write the TypeScript, hot-reload, test, and iterate. This is what Armin Ronacher calls "agents

built for agents building agents."

Update all
pi update

List installed
pi list

"Build me an extension that tracks how many tokens each tool call uses
and shows a summary widget above the editor."

4.7 Self-Extending Agent

- 14/42 - CC BY-SA 4.0

5. Session Management

Pi's session system is tree-structured, which sets it apart from the linear chat history in most agents.

5.1 Core Concepts

Sessions are stored as JSONL files at:

Each entry has an id and parentId , forming a tree. All branches live in a single file -- no proliferation of session files when you

explore alternatives.

5.2 Key Commands

5.3 In-Session Navigation

5.4 Branching Workflow

~/.pi/agent/sessions/<project-path>/<session-id>.jsonl

Start pi (new session)
pi

Continue most recent session in current project
pi -c

Browse and pick from all past sessions (across projects)
pi -r

Jump to a specific session by ID
pi --session abc123

Ephemeral mode (don't save)
pi --no-session

Command What it does

/tree Navigate the full session tree, jump to any point, continue from there

/fork Create a new session from current branch (closest to Amp's handoff)

/compact Summarize older messages, keep working

/compact <prompt> Directed compaction ("focus on the API refactor only")

/name <label> Label the current session

/export [file] Export session to HTML

/share Upload as private GitHub gist with shareable URL

Main conversation
 |
 +-- Message 1
 +-- Message 2
 +-- Message 3 <-- /tree here, select Message 2
 |
 +-- Branch A (original continuation)
 +-- Branch B (new direction from Message 2)

5. Session Management

- 15/42 - CC BY-SA 4.0

All branches are preserved. Use /tree to switch between them. Filter modes:

Default view

No-tools (hide tool calls)

User-only

Labeled-only (bookmarks)

All entries

Press l in tree view to label entries as bookmarks for quick navigation.

5.5 Compaction

Long sessions exhaust context windows. Compaction summarizes older messages while keeping recent ones.

Manual: /compact or /compact <instructions>

Automatic: Triggers on context overflow (recovers and retries) or proactively when approaching the limit

Customizable: Extensions can implement topic-based compaction, code-aware summaries, or use different summarization

models

5.6 Cross-Project Sessions

Sessions are organized by working directory, but pi -r shows sessions from ALL projects. You can jump to a session from a

different project:

5.7 Comparison with Amp's Thread Model

The main gap: pi doesn't have native cross-session referencing. You can't @mention another session from within a session.

Workaround: ask pi to read the JSONL file, or build a /recall <session-id> extension.

•

•

•

•

•

•

•

•

pi --session <id-from-other-project>
Pi will ask if you want to fork it into current directory

Feature Amp Pi

Thread/Session Server-side threads with IDs Local JSONL files with IDs

Handoff Auto-generates focused prompt for new

thread

/fork -- copies history, you edit the starting

message

Thread

mentioning

@thread-id from anywhere Not native (read session file manually or build

extension)

Restore to point Hover + Restore button /tree -- navigate and continue

Thread map Visual graph of connected threads /tree with filter modes

5.5 Compaction

- 16/42 - CC BY-SA 4.0

6. Multi-Model Freedom

One of pi's killer features: seamless model switching mid-session across 15+ providers.

6.1 Supported Providers

Via subscription (OAuth): - Anthropic Claude Pro/Max - OpenAI ChatGPT Plus/Pro (Codex) - GitHub Copilot - Google Gemini

CLI - Google Antigravity

Via API key: - Anthropic, OpenAI, Azure OpenAI, Google Gemini, Google Vertex - Amazon Bedrock, Mistral, Groq, Cerebras, xAI -

OpenRouter, Vercel AI Gateway, ZAI, OpenCode Zen - Hugging Face, Kimi For Coding, MiniMax

Self-hosted: - Ollama, llama.cpp, vLLM, LM Studio (via OpenAI-compatible API)

6.2 Switching Models

6.3 Context Handoff

Pi-ai is designed from the ground up for cross-provider context handoff. When you switch from Anthropic to OpenAI mid-session:

Thinking traces are converted to <thinking></thinking> content blocks

Provider-specific signed blobs are handled transparently

Tool call history is preserved across providers

Token/cost tracking continues accurately

This is best-effort (providers have different capabilities), but it works well in practice.

From Ewald Benes:

Models have finally become a commodity to me. I'm currently cycling through Anthropic, z.ai, and Moonshot AI (Kimi) within the

same session. I can swap the "brain" of the agent mid-stream, and the new model picks up the context seamlessly where the last

one left off.

6.4 Model Aliases (via pi-model-switch extension)

Install the community extension:

Configure aliases in ~/.pi/agent/extensions/model-switch/aliases.json :

Then just say: "switch to cheap" or "use the coding model for this refactor."

Ctrl+L -- Open model selector (full list)
Ctrl+P -- Cycle through scoped/favorite models
Shift+Ctrl+P -- Cycle backward
/model -- Switch via command

•

•

•

•

pi install npm:pi-model-switch

{
"cheap": "google/gemini-2.5-flash",
"fast": "google/gemini-2.5-flash",
"coding": "anthropic/claude-opus-4-5",
"budget": ["openai/gpt-5-mini", "google/gemini-2.5-flash"]

}

6. Multi-Model Freedom

- 17/42 - CC BY-SA 4.0

6.5 Custom Providers

Add providers via ~/.pi/agent/models.json if they speak a supported API:

6.6 Scoped Models

Configure a subset of models for quick cycling with Ctrl+P :

Use --models <patterns> on the CLI for comma-separated patterns.

6.7 Practical Workflow

A typical multi-model session:

Start with Gemini Flash for quick exploration (cheap, fast, huge context)

Switch to Claude Sonnet for implementation (best coding)

Bring in GPT-5.2 via oracle extension for review (strong reasoning)

Switch to a cheap model for boilerplate/tests

All in one session, all context preserved.

import { getModel, stream } from "@mariozechner/pi-ai";

const ollamaModel = {
id: "llama-3.1-8b",
name: "Llama 3.1 8B (Ollama)",
api: "openai-completions",
provider: "ollama",
baseUrl: "http://localhost:11434/v1",
reasoning: false,
input: ["text"],
cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 },
contextWindow: 128000,
maxTokens: 32000,

};

/scoped-models -- Enable/disable models for cycling

1.

2.

3.

4.

6.5 Custom Providers

- 18/42 - CC BY-SA 4.0

7. No MCP: The CLI-First Philosophy

This is pi's most controversial and deliberate design decision.

"pi does not and will not support MCP." -- Mario Zechner

7.1 The Problem with MCP

Popular MCP servers dump their entire tool descriptions into your context on every session:

That's 7-9% of your context window gone before you start working. Most of those tools won't be used in a given session.

Additionally, many MCP servers are thin wrappers around CLI tools that already exist:

Just like a lot of meetings could have been emails, a lot of MCPs could have been CLI invocations. For example, there's the

GitHub MCP Server, which reimplements functionality that's already available in the GitHub CLI. There's little benefit of using

that MCP compared to telling your coding agent to use its shell tool to run the GitHub CLI directly.

7.2 The CLI Alternative

Pi's approach: build CLI tools with README files.

The agent reads the README only when it needs the tool (progressive disclosure)

Token cost is paid only on demand

CLI tools are composable (pipe outputs, chain commands)

CLI tools are easy to extend (just add another script)

LLMs already know how to use CLI tools from training data

Example -- adding web search to pi via a skill:

Mario maintains a collection of CLI tools at github.com/badlogic/agent-tools .

7.3 The Benchmark

Mario ran a formal evaluation comparing MCP vs CLI for coding agents (August 2025):

Setup: terminalcp (his tmux alternative) as both MCP server and CLI, compared against tmux and screen. Three tasks, 10 runs

each, using Claude Code.

MCP Server Tools Token cost

Playwright MCP 21 tools ~13,700 tokens

Chrome DevTools MCP 26 tools ~18,000 tokens

1.

2.

3.

4.

5.

SKILL.md
name: web-search
description: Search the web using the search CLI tool

Usage
Run `search "your query"` to search the web.
Run `search --fetch <url>` to read a page.
See the README at ~/agent-tools/search/README.md for full options.

7. No MCP: The CLI-First Philosophy

- 19/42 - CC BY-SA 4.0

Results:

Key findings:

MCP vs CLI is a wash on success rates

MCP was 23% faster due to bypassing Claude Code's security checks on bash

Tool design and documentation quality matter far more than the protocol

For complex tasks, well-designed tools beat standard tools by 39% on cost

Conclusion:

Maybe instead of arguing about MCP vs CLI, we should start building better tools. The protocol is just plumbing. What matters is

whether your tool helps or hinders the agent's ability to complete tasks.

If you're building a tool from scratch and your users already have a shell tool available, just make a good CLI. It's simpler and

more portable. Plus, the output of your CLI can be further filtered and massaged just by piping it into another CLI tool, which

can increase token efficiency at the cost of additional instructions. That's not possible with MCPs.

7.4 If You Must Use MCP

Peter Steinberger's mcporter wraps MCP servers as CLI tools, giving you the best of both worlds. OpenClaw uses this approach.

7.5 The Deeper Argument

From Armin Ronacher:

If you consider how MCP works, on most model providers, tools for MCP, like any tool for the LLM, need to be loaded into the

system context or the tool section thereof on session start. That makes it very hard to impossible to fully reload what tools can do

without trashing the complete cache or confusing the AI about how prior invocations work differently.

Pi's skill system avoids this entirely. Skills are loaded into context only when the agent determines they're relevant, and they can

be unloaded when no longer needed. This is fundamentally incompatible with how MCP tools work.

7.6 Community Perspective

From r/ClaudeAI:

Why use MCP in subagents when they can use CLI with 0 tool context overhead?

From Cobus Greyling:

What if the best interface for AI Agents is not a new protocol at all? What if it is the command line -- the same interface that has

been powering software for over fifty years?

The CLI-over-MCP movement is growing, but pi is the only major agent that has made it a first-class architectural decision.

7.7 The Counter-Argument: MCP Is Evolving

Pi's no-MCP stance is well-reasoned for today's landscape, but it's worth acknowledging that MCP is not standing still.

Metric terminalcp MCP terminalcp CLI tmux screen

Success rate 100% 100% 100% 67%

Total time 51 min 66 min ~60 min ~70 min

Total cost $19.45 $19.95 $22 $22+

•

•

•

•

7.4 If You Must Use MCP

- 20/42 - CC BY-SA 4.0

https://github.com/nicobailon/mcporter

MCP 2.0 introduces significant improvements that address some of pi's criticisms:

Streamable HTTP transport -- Replacing stdio, enabling remote multi-tenant tool servers

OAuth 2.1 auth flows -- Making enterprise adoption realistic

Elicitation -- The server can ask the agent for more info mid-execution, enabling richer orchestration

Tool annotations (readOnlyHint , destructiveHint) -- Letting agents reason about safety before calling tools, which could

enable smarter tool selection and reduce the "dump all tools into context" problem

Governance shift: Anthropic has donated MCP to the Agentic AI Foundation, which will be managed by the Linux Foundation.

This moves MCP from a single-vendor protocol to an open, community-governed standard -- similar to how Kubernetes moved

from Google to the CNCF. With broader governance, MCP is likely to evolve faster and address more real-world pain points.

What MCP supporters would argue:

The context pollution problem is solvable with better tool selection and lazy loading (MCP 2.0's tool annotations are a step

toward this)

CLI tools break across platforms, have version dependencies, and sometimes lack documentation -- MCP provides a structured

contract

Stateful tools (database connections, browser sessions, long-running processes) are inherently easier with MCP's persistent

server model than with CLI invocations

As MCP becomes an open standard under the Linux Foundation, the ecosystem will mature and the "badly designed wrapper"

problem will diminish

Code execution MCPs (Armin Ronacher's "ubertool" pattern) can expose a single tool that accepts code, combining MCP's

statefulness with CLI's composability

The balanced view: Pi's CLI-first approach is demonstrably effective for coding agents with a bash tool. The benchmarks prove

it. But MCP and CLI are solving different layers of the problem, and as MCP 2.0 matures under open governance, the gap may

narrow. Pi's philosophy remains valid -- progressive disclosure and minimal context are good engineering regardless of protocol --

but declaring "no MCP ever" is a bet that the protocol's evolution won't produce something genuinely better than CLI +

README for the use cases pi cares about. Time will tell.

•

•

•

•

•

•

•

•

•

7.7 The Counter-Argument: MCP Is Evolving

- 21/42 - CC BY-SA 4.0

8. Community Extensions

Pi's community has built extensions that cover the major features found in competing agents. Here are the most relevant

packages.

8.1 shitty-extensions (by hjanuschka)

The most comprehensive community package. Actively maintained.

8.1.1 Oracle Usage

Once installed, tell the agent:

The oracle sends the current context to a second model (configurable) and returns its analysis. It's read-only -- it advises but

doesn't make changes.

8.1.2 Handoff Usage

Generates a focused prompt for a new session based on the current context and your goal.

8.2 pi-model-switch (by nicobailon)

Lets the agent switch models autonomously.

Configure aliases:

pi install npm:shitty-extensions

Extension Description Equivalent in

oracle.ts Get second opinions from other AI models Amp Oracle

handoff.ts Transfer context to new sessions Amp Handoff

plan-mode.ts Read-only exploration mode Claude Code plan mode

memory-mode.ts Save instructions to AGENTS.md Persistent learning

cost-tracker.ts Session spending analysis Built-in in Amp/Claude

clipboard.ts Copy text to system clipboard via OSC52 --

ultrathink.ts Rainbow animated "ultrathink" effect Fun

loop.ts Conditional loops (by mitsuhiko/Armin Ronacher) --

flicker-corp.ts Authentic fullscreen flicker experience Parody of Claude Code

"Ask the oracle to review this implementation"
"Use the oracle to debug this race condition"
"Have the oracle brainstorm alternative approaches"

/handoff now implement the authentication flow
/handoff execute phase one of the plan

pi install npm:pi-model-switch

{
"cheap": "google/gemini-2.5-flash",
"coding": "anthropic/claude-opus-4-5",

8. Community Extensions

- 22/42 - CC BY-SA 4.0

Usage:

8.3 pi-subagent-enhanced (by nicobailon)

Full sub-agent support with multiple execution modes.

Features: - Output truncation (configurable byte/line limits) - Debug artifacts (input, output, JSONL, metadata per task) - Session-

scoped notifications

8.4 @marckrenn/pi-sub-core

Shared usage tracking across providers.

Tracks usage for: Anthropic, OpenAI Codex, GitHub Copilot, Google Gemini, Antigravity, z.ai, AWS Kiro.

8.5 pi-skills (by Mario Zechner)

Mario's official collection of skills for common development tasks.

These are curated, first-party skills that follow pi's philosophy of progressive disclosure -- the agent loads them on-demand when

relevant. Check the repo for the current list of available skills and their descriptions.

https://github.com/badlogic/pi-skills

8.6 Armin Ronacher's Extensions (referenced in his blog)

Armin has built several extensions he describes in his Pi writeup:

/answer -- Extracts questions from the agent's response, presents them in a structured UI, sends answers back

Custom to-do tracker -- Agent-specific local issue tracker with a tool interface

Various TUI widgets -- Dashboards, debugging interfaces

His philosophy: point your agent to an existing extension and say "build it like that, but with these changes."

"budget": ["openai/gpt-5-mini", "google/gemini-2.5-flash"]
}

"Switch to a cheaper model"
"Use Opus for this refactor"
"List available models"

Mode Description

Single { agent: "worker", task: "refactor auth" }

Chain Sequential tasks with {previous} placeholder

Parallel Multiple tasks running simultaneously

Async Background execution with notifications

pi install npm:@marckrenn/pi-sub-core

pi install git:github.com/badlogic/pi-skills

•

•

•

8.3 pi-subagent-enhanced (by nicobailon)

- 23/42 - CC BY-SA 4.0

8.7 Notable Community Integrations

Emacs frontend (dnouri/pi-coding-agent) -- Full Emacs mode with markdown rendering, streaming, branch navigation

OpenClaw -- Slack/Telegram bot built on pi's SDK

pi-mom -- Mario's autonomous Slack bot

8.8 Finding More Packages

The package registry at shittycodingagent.ai/packages lists community contributions (when npm registry is reachable).

•

•

•

Browse on npm
Search for keyword: pi-package

Or check the Discord community server

8.7 Notable Community Integrations

- 24/42 - CC BY-SA 4.0

9. Comparison with Other Agents

9.1 Overview Matrix

9.2 Pi vs Claude Code

The most common migration path. Key differences:

Why people switch: - Token efficiency: "My token limits last 10x longer" (Ewald Benes) - No hidden context injection - No

flickering TUI - System prompt doesn't change on every release - Multi-model support - Session branching

What you lose: - Built-in permission system - Native MCP support - Anthropic-optimized tool calling - Larger community and

ecosystem - Enterprise features (SSO, audit logs)

From r/ClaudeCode:

The selling point of pi is its simplicity. It lacks a lot of fancy features, but that means you get the smallest starting context out

there, and you don't pay for things like 'plan mode' or 'todo' -- you just have to do the crazy complicated thing of telling it:

make a plan if you want to plan something.

Feature Pi Claude Code Amp OpenCode Aider

Core tools 4 15+ ~10 10+ 2 (read/edit)

System prompt

size

Minimal Large Medium Medium Minimal

MCP support No (by design) Yes Yes Yes No

Sub-agents Via extension Built-in Built-in

(Oracle)

Built-in No

Plan mode Via extension Built-in Built-in Built-in No

Session

branching

Tree structure Linear Threads + fork Linear No

Multi-model 15+ providers Anthropic only Anthropic +

OpenAI

Multi-provider Multi-provider

Mid-session

switch

Yes No No Yes Yes

Extension

system

TypeScript +

skills

CLAUDE.md

only

Toolboxes Custom tools No

Self-extending Yes (hot-

reload)

No No No No

Context

handoff

Cross-provider N/A N/A Limited Limited

YOLO mode Default Opt-in Opt-in Configurable No

Open source MIT No No MIT Apache 2.0

Price Pay-per-token

or subscription

Subscription Subscription Pay-per-token Pay-per-token

9. Comparison with Other Agents

- 25/42 - CC BY-SA 4.0

9.3 Pi vs Amp

Amp is the closest competitor in philosophy (focused threads, quality over features).

Amp advantages: - Oracle is deeply integrated (auto-invoked, optimized token flow) - Handoff auto-generates focused prompts -

Thread mentioning (@thread-id) - Thread Map for visual navigation - Server-side thread management - Polished VS Code

extension

Pi advantages: - Full multi-model freedom (Amp locks you to Anthropic + OpenAI) - Self-extending agent (Amp can't build its

own tools) - Open source (MIT) - No vendor lock-in - Smaller context footprint - Community-driven extension ecosystem

9.4 Pi vs OpenCode

OpenCode (by SST) takes the "everything" approach.

OpenCode advantages: - Built-in MCP support - LSP integration (semantic code intelligence) - Built-in web fetch tool - Go

binary (no Node.js dependency)

Pi advantages: - Smaller core, less context overhead - Extension system is far more powerful - Session branching (OpenCode is

linear) - Cross-provider context handoff - Self-extending capability

9.5 Pi vs Aider

Aider is even more minimal than pi -- it only reads and edits code.

Aider advantages: - Git-native (auto-commits, diff-based editing) - Repository map for large codebases - No bash tool (can't

accidentally break things)

Pi advantages: - Bash tool (can run tests, install deps, debug) - Extension system - Session branching - TUI with rich rendering -

Multi-mode (interactive, print, RPC, SDK)

9.6 The Armin Ronacher Perspective

From his blog post comparing Pi and Amp:

Pi is interesting to me because of two main reasons. First of all, it has a tiny core. It has the shortest system prompt of any agent

that I'm aware of and it only has four tools. The second thing is that it makes up for its tiny core by providing an extension

system that also allows extensions to persist state into sessions, which is incredibly powerful.

And a little bonus: Pi itself is written like excellent software. It doesn't flicker, it doesn't consume a lot of memory, it doesn't

randomly break, it is very reliable and it is written by someone who takes great care of what goes into the software.

9.3 Pi vs Amp

- 26/42 - CC BY-SA 4.0

10. Limitations and Gaps

An honest assessment of pi's current drawbacks. These are real tradeoffs, not dealbreakers -- but the team should be aware of

them.

10.1 No Native Cross-Session References

You cannot @mention another session from within a session. Amp's thread mentioning and "Amp Now Reads Threads" feature has

no equivalent. Workarounds exist (read the JSONL file, build a /recall extension), but it's not first-class.

10.2 No Built-in Permission System

YOLO mode means the agent executes everything without asking. For teams working on production systems, this requires

discipline:

Run in a container or sandboxed environment

Use a dedicated user account (useradd claude)

Build a permission gate extension (examples exist)

Or install the community plan-mode extension for read-only exploration

From r/ClaudeCode:

It only supports yolo mode, which is honestly fine but if you want security just use linux and useradd claude and use that so it

can't access your own home directory.

10.3 No IDE Integration

Pi is terminal-only. There's no VS Code extension, no JetBrains plugin, no native GUI. The closest alternatives:

Emacs mode (dnouri/pi-coding-agent) -- community-built, works well

RPC mode for building custom integrations

SDK for embedding in your own apps

If your team relies heavily on IDE features (inline diffs, gutter annotations, hover previews), pi won't replace that workflow.

10.4 Steeper Learning Curve for Non-Terminal Users

Pi assumes comfort with: - Terminal workflows - Shell commands and Unix tools - TypeScript (for writing extensions) - Managing

API keys and provider configuration

There's no guided onboarding, no wizard, no "just works" setup. You need to configure providers, understand the session model,

and learn the commands.

10.5 Extension Quality Varies

Community extensions are maintained by individuals. Unlike Claude Code or Amp where features are tested by a company:

Extensions may break on pi updates

No formal review process

Documentation quality varies

Some extensions are experimental

•

•

•

•

•

•

•

•

•

•

•

10. Limitations and Gaps

- 27/42 - CC BY-SA 4.0

Always test extensions in a non-critical project first.

10.6 No Built-in Eval/Testing Framework

Unlike Mastra (which has runEvals and scorers), pi has no formal way to test agent behavior or tool quality. Testing is manual --

you use the extension and see if it works. For teams that need CI-ready verification of agent behavior, this is a gap.

10.7 Windows Support is Second-Class

From r/ClaudeCode:

I recommend ditching windows. Saved me my sanity. Agents are constantly doing command syntax mistakes on windows.

Pi works on Windows but the experience is rougher. Linux and macOS are the primary targets.

10.8 No Server-Side Session Management

Sessions are local JSONL files. There's no cloud sync, no team-shared session history, no server-side thread management like

Amp. For distributed teams, this means:

Sessions live on individual machines

Sharing requires /export to HTML or /share to GitHub gist

No real-time collaboration on sessions

10.9 No Native Long-Term Memory

Pi doesn't have built-in vector search, RAG, or cross-session memory. The alternatives:

AGENTS.md for project-level persistent instructions

memory-mode extension to save learnings to AGENTS.md

Build a RAG extension (the hooks exist, but you build it yourself)

Session branching partially compensates (you can revisit old decisions)

From Ewald Benes:

Pi's AGENTS.md for project rules, combined with its session branching, handles 90% of my "memory" needs without the

overhead of a separate manager.

10.10 Small (but Growing) Ecosystem

Pi has 1.2M+ weekly downloads and an active Discord, but the extension ecosystem is still small compared to VS Code or even

Claude Code's community. You may need to build extensions yourself rather than finding pre-built ones.

10.11 The "Un-Google-able" Name

Mario chose the name deliberately to avoid users and issues. It worked. Searching for "pi coding agent" returns results about

Raspberry Pi, the number pi, and various unrelated projects. Always search for "pi-coding-agent" or "shittycodingagent" or

"badlogic/pi-mono".

•

•

•

•

•

•

•

10.6 No Built-in Eval/Testing Framework

- 28/42 - CC BY-SA 4.0

10.12 No Cloud Workspace

Pi is entirely local. There's no cloud-hosted workspace, no web UI you can open from any browser, no always-on server-side

sessions. Claude Code has a web interface. Amp's threads live on their servers. Pi's sessions live on your machine.

This means: - You can't start a session on your laptop and continue it from your phone's browser - There's no team dashboard

showing active sessions - No "always running" agent that works while your machine is off

Pi does run on Android via Termux (see 10-quickstart.md), and you can copy your ~/.pi/agent/ config between machines. But

there's no sync layer -- it's manual file transfer. For teams that want cloud-native agent workflows, this is a real gap compared to

Amp or Claude Code's web offerings.

10.12 No Cloud Workspace

- 29/42 - CC BY-SA 4.0

11. Quick Start and Daily Workflows

11.1 Installation

Or use a standalone binary (no Node.js required) -- check the GitHub releases.

11.2 Android (Termux) Setup

Pi runs on Android via Termux with zero friction:

Install Termux from F-Droid

Install Node.js: pkg install nodejs

Install pi: npm install -g @mariozechner/pi-coding-agent

Copy just your ~/.pi/agent/models.json from your desktop

Run pi

That's it -- models.json is the only file you need to bring over. Extensions, skills, and packages can all be installed via CLI

afterwards (pi install npm:shitty-extensions , etc.). This is one of pi's underrated strengths: because everything is npm packages

and local files, getting productive on a new device takes under a minute.

11.3 Authentication

11.4 First Session

Pi will load any AGENTS.md files from ~/.pi/agent/ , parent directories, and the current directory.

npm install -g @mariozechner/pi-coding-agent

1.

2.

3.

4.

5.

Option 1: API key
export ANTHROPIC_API_KEY=sk-ant-...
pi

Option 2: OAuth subscription (Claude Pro/Max, ChatGPT Plus, Copilot, Gemini)
pi
/login

cd your-project
pi

11. Quick Start and Daily Workflows

- 30/42 - CC BY-SA 4.0

https://termux.dev/

11.5 Essential Commands

11.6 Editor Features

11.7 Message Queuing

While the agent is working:

Enter -- Send steering message (interrupts after current tool)

Alt+Enter -- Send follow-up (waits until agent finishes)

Escape -- Abort and restore queued messages

Command Action

Ctrl+L Switch model

Ctrl+P Cycle favorite models

Shift+Tab Cycle thinking level

/tree Navigate session tree

/fork Branch to new session

/compact Summarize old context

/name <label> Label current session

/export Export to HTML

/share Upload to GitHub gist

/reload Hot-reload extensions

Ctrl+C Clear editor

Ctrl+C x2 Quit

Escape Cancel/abort

Escape x2 Open /tree

Ctrl+O Collapse/expand tool output

Feature How

File reference Type @ to fuzzy-search project files

Path completion Tab

Multi-line Shift+Enter

Paste images Ctrl+V

Run bash inline !command (sends output to LLM)

Run bash silent !!command (runs without sending)

•

•

•

11.5 Essential Commands

- 31/42 - CC BY-SA 4.0

11.8 Recommended Setup

11.8.1 1. Global AGENTS.md

Create ~/.pi/agent/AGENTS.md with your universal preferences:

11.8.2 2. Project AGENTS.md

Create AGENTS.md in your project root:

11.8.3 3. Install Community Extensions

11.8.4 4. Configure Model Aliases

Create ~/.pi/agent/extensions/model-switch/aliases.json :

11.9 Daily Workflow Patterns

11.9.1 Focused Task

11.9.2 Exploration + Branch

Global Agent Instructions

Style
- Use TypeScript strict mode
- Prefer functional patterns
- Keep functions under 30 lines

Tools
- Use pnpm for package management
- Use vitest for testing

Project: My App

Stack
- Next.js 15, TypeScript, Tailwind
- Deployed on Vercel

Conventions
- Components in src/components/
- API routes in src/app/api/
- Use server actions for mutations

Oracle + handoff + plan mode + more
pi install npm:shitty-extensions

Model switching with aliases
pi install npm:pi-model-switch

{
"cheap": "google/gemini-2.5-flash",
"coding": "anthropic/claude-sonnet-4-20250514",
"review": "openai/gpt-5.2"

}

pi
> "Implement the user authentication flow using NextAuth.js"
Agent works autonomously until done

pi
> "Explore two approaches for the caching layer"
Agent explores approach A
/tree # Go back to before approach A
> "Now try approach B using Redis instead"
Compare both branches

11.8 Recommended Setup

- 32/42 - CC BY-SA 4.0

11.9.3 Multi-Model Brainstorm

11.9.4 Handoff Between Sessions

11.9.5 Resume Previous Work

> "Design the API schema for the notification service"
Claude designs it
> "Switch to review model"
> "Review the schema design, find edge cases"
GPT-5.2 reviews
> "Switch to coding model"
> "Implement the schema based on the review feedback"

> "Plan the migration from REST to GraphQL"
Agent creates the plan
/handoff implement phase 1 of the migration plan
New session starts with focused context

pi -c # Continue most recent session
pi -r # Browse all sessions, pick one

11.9.3 Multi-Model Brainstorm

- 33/42 - CC BY-SA 4.0

12. Code Snippets Reference

Concrete code examples referenced throughout the handbook.

12.1 Extension: Permission Gate

Block dangerous bash commands with user confirmation:

12.2 Extension: Oracle (Simplified)

Consult a second model for review and brainstorming:

// ~/.pi/agent/extensions/permission-gate.ts
import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";

const DANGEROUS_PATTERNS = ["rm -rf", "sudo", "DROP TABLE", "format", "mkfs"];

export default function (pi: ExtensionAPI) {
pi.on("tool_call", async (event, ctx) => {

if (event.toolName !== "bash") return;

const cmd = event.input.command || "";
const match = DANGEROUS_PATTERNS.find((p) => cmd.includes(p));

if (match) {
const ok = await ctx.ui.confirm(

"Dangerous Command",
`Command contains "${match}":\n${cmd}\n\nAllow?`

);
if (!ok) return { block: true, reason: `Blocked: contains ${match}` };

}
});

}

// ~/.pi/agent/extensions/oracle.ts
import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { Type } from "@sinclair/typebox";
import { getModel, stream } from "@mariozechner/pi-ai";

export default function (pi: ExtensionAPI) {
pi.registerTool({

name: "oracle",
label: "Oracle",
description: `Consult a second model for review, debugging, or brainstorming.

 The oracle analyzes and advises but doesn't make changes.`,
parameters: Type.Object({

question: Type.String({ description: "What to ask the oracle" }),
context: Type.String({ description: "Relevant code or situation summary" }),

}),
async execute(toolCallId, params, signal, onUpdate, ctx) {

const oracle = getModel("openai", "gpt-5.2");

const response = await stream(
oracle,
{

system: `You are a senior engineering oracle. You review, analyze,
 and advise. You do NOT write code directly.`,

messages: [
{

role: "user",
content: `${params.context}\n\n${params.question}`,

},
],

},
{ apiKey: process.env.OPENAI_API_KEY! }

);

return {
content: [{ type: "text", text: await response.text }],
details: { model: "gpt-5.2", role: "oracle" },

};
},

});
}

12. Code Snippets Reference

- 34/42 - CC BY-SA 4.0

12.3 Extension: Session Recall

Read and summarize another session (cross-session reference):

12.4 Skill: Web Search (CLI-based)

A skill file that teaches the agent to use a CLI search tool:

// ~/.pi/agent/extensions/recall.ts
import type { ExtensionAPI } from "@mariozechner/pi-coding-agent";
import { readFileSync, readdirSync } from "node:fs";
import { join } from "node:path";
import { homedir } from "node:os";

export default function (pi: ExtensionAPI) {
pi.registerCommand("recall", {

description: "Load summary of another session by ID",
handler: async (sessionId, ctx) => {

if (!sessionId) {
ctx.ui.notify("Usage: /recall <session-id>", "error");
return;

}

const sessionsDir = join(homedir(), ".pi", "agent", "sessions");
// Search all project directories for the session
const projects = readdirSync(sessionsDir);

for (const project of projects) {
const projectDir = join(sessionsDir, project);
const files = readdirSync(projectDir).filter((f) =>

f.startsWith(sessionId)
);

if (files.length > 0) {
const content = readFileSync(join(projectDir, files[0]), "utf-8");
const lines = content.split("\n").filter(Boolean);
const messages = lines

.map((l) => JSON.parse(l))

.filter(
(e) => e.type === "message" && e.message?.role === "assistant"

)
.slice(-5); // Last 5 assistant messages

const summary = messages
.map((m) =>

m.message.content
.filter((c: any) => c.type === "text")
.map((c: any) => c.text)
.join("")

)
.join("\n---\n");

ctx.ui.notify(
`Loaded session ${sessionId} from ${project}`,
"success"

);
// Inject as context for next turn
return { inject: summary };

}
}

ctx.ui.notify(`Session ${sessionId} not found`, "error");
},

});
}

<!-- .pi/skills/web-search/SKILL.md -->
Web Search

Search the web and fetch page content using CLI tools.

Tools

search
Search the web: `search "your query" --max-results 5`
Returns: title, URL, snippet for each result.

fetch
Read a web page: `fetch <url> --format text --max-chars 5000`
Returns: page content as plain text.

Usage Pattern
1. Search for information: `search "topic"`
2. Read promising results: `fetch <url>`
3. Synthesize findings for the user

Notes

12.3 Extension: Session Recall

- 35/42 - CC BY-SA 4.0

12.5 AGENTS.md Template

12.6 Custom Provider Configuration

- Prefer specific queries over broad ones
- Fetch only the pages that look relevant from search results
- Summarize rather than dumping raw content

AGENTS.md

Project
- Name: [project name]
- Stack: [e.g., Next.js 15, TypeScript, Tailwind, Drizzle ORM]
- Deployed on: [e.g., Vercel, Cloudflare Workers]

Conventions
- Use pnpm for package management
- Use strict TypeScript
- Components in src/components/
- Keep functions under 30 lines
- Write tests for business logic

Model Preferences
- Simple file ops / quick questions: switch to "cheap"
- Complex refactoring / architecture: switch to "coding"
- Code review: switch to "review"
- Default to budget-friendly models unless quality is needed

Do Not
- Commit credentials or .env files
- Modify files in node_modules/
- Run destructive commands without confirmation

// ~/.pi/agent/models.json
{

"providers": [
{

"id": "my-ollama",
"name": "Local Ollama",
"api": "openai-completions",
"baseUrl": "http://localhost:11434/v1",
"models": [

{
"id": "llama-3.1-70b",
"name": "Llama 3.1 70B",
"contextWindow": 128000,
"maxTokens": 32000,
"reasoning": false,
"input": ["text"]

}
]

}
]

}

12.5 AGENTS.md Template

- 36/42 - CC BY-SA 4.0

13. Official References

Direct links to pi's official documentation, source code, and community resources.

13.1 Core Documentation

13.2 Extension Examples (50+)

https://github.com/badlogic/pi-mono/tree/main/packages/coding-agent/examples/extensions

Notable examples in the repo: - summarize.ts -- Conversation summaries - snake.ts -- Snake game (TUI demo) - async-subagent/

-- Sub-agent implementation - Various permission gate patterns

13.3 Source Code

Document URL

README (main docs) https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/README.md

Extensions guide https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/extensions.md

Skills guide https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/skills.md

Session format https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/session.md

Packages guide https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/packages.md

Themes guide https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/themes.md

Prompt templates https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/prompt-templates.md

Keybindings https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/keybindings.md

Custom providers https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/custom-provider.md

Adding models https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/models.md

RPC mode https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/rpc.md

SDK usage https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/sdk.md

TUI components https://github.com/badlogic/pi-mono/blob/main/packages/coding-agent/docs/tui.md

Package Path

pi-ai (LLM API) https://github.com/badlogic/pi-mono/tree/main/packages/ai

pi-agent-core https://github.com/badlogic/pi-mono/tree/main/packages/agent

pi-coding-agent https://github.com/badlogic/pi-mono/tree/main/packages/coding-agent

pi-tui https://github.com/badlogic/pi-mono/tree/main/packages/tui

pi-web-ui https://github.com/badlogic/pi-mono/tree/main/packages/web-ui

pi-mom (Slack bot) https://github.com/badlogic/pi-mono/tree/main/packages/mom

pi-pods (vLLM) https://github.com/badlogic/pi-mono/tree/main/packages/pods

13. Official References

- 37/42 - CC BY-SA 4.0

13.4 Community Packages

13.5 CLI Tools (Mario's agent-tools)

https://github.com/badlogic/agent-tools

CLI tools designed for agent use with READMEs the agent reads on demand.

13.6 Blog Posts and Articles

13.7 Community Discussions

Package npm GitHub

shitty-extensions npm:shitty-extensions https://github.com/hjanuschka/shitty-extensions

pi-model-switch npm:pi-model-switch https://github.com/nicobailon/pi-model-switch

pi-subagent-enhanced -- https://github.com/nicobailon/pi-subagent-enhanced

@marckrenn/pi-sub-core npm:@marckrenn/pi-sub-core https://github.com/marckrenn/pi-sub

pi-skills (official) git:github.com/badlogic/pi-skills https://github.com/badlogic/pi-skills

pi-coding-agent (Emacs) MELPA https://github.com/dnouri/pi-coding-agent

Title Author URL

What I learned building an opinionated

and minimal coding agent

Mario Zechner https://mariozechner.at/posts/2025-11-30-pi-coding-

agent/

MCP vs CLI: Benchmarking Tools for

Coding Agents

Mario Zechner https://mariozechner.at/posts/2025-08-15-mcp-vs-cli/

Pi: The Minimal Agent Within OpenClaw Armin Ronacher https://lucumr.pocoo.org/2026/1/31/pi/

Why I Switched to Pi Helmut

Januschka

https://www.januschka.com/pi-coding-agent.html

The Only Coding Agent You'll Ever Need Ewald Benes https://ewaldbenes.com/en/blog/the-only-coding-agent-

you-ll-ever-need

An Emacs mode for a shitty coding agent Daniel Nouri https://danielnouri.org/notes/2025/12/30/an-emacs-

mode-for-a-shitty-coding-agent/

Your MCP Doesn't Need 30 Tools: It

Needs Code

Armin Ronacher https://lucumr.pocoo.org/2025/8/18/code-mcps/

Replace MCP With CLI Cobus Greyling https://cobusgreyling.substack.com/p/replace-mcp-with-

cli-the-best-ai

Thread Platform

Change your coding agent to pi https://www.reddit.com/r/ClaudeCode/comments/1qu5fa4/

Why I switched from Claude Code to Pi https://www.reddit.com/r/ClaudeCode/comments/1r11egp/

HN discussion on Mario's blog post https://news.ycombinator.com/item?id=46844822

pi-coding-agent in Emacs https://www.reddit.com/r/emacs/comments/1qa8xql/

13.4 Community Packages

- 38/42 - CC BY-SA 4.0

13.8 DeepWiki (AI-generated docs from source)

https://deepwiki.com/badlogic/pi-mono/4-@mariozechnerpi-coding-agent

13.8 DeepWiki (AI-generated docs from source)

- 39/42 - CC BY-SA 4.0

14. Contributing

This handbook is a community project. No contribution is too small.

14.1 What we're looking for

Typo fixes, grammar improvements, broken links

Better code examples or updated snippets

New sections, tips, or workflow patterns you've discovered

Extensions or skills you've built — write them up, share the code

Corrections to anything that's wrong or outdated

Screenshots, terminal recordings, or diagrams

Translations

The Limitations page documents known gaps. Building solutions for those and writing them up here is the highest-impact work

you can do.

14.2 How to contribute

Fork sparticle9/pi-handbook

Edit or add markdown files in docs/

Open a PR with a short description of what you changed and why

That's it. No build step required — the site deploys automatically on merge.

14.3 Guidelines

Write in plain, direct English. No fluff, no hype.

Be honest about limitations. Don't oversell pi or undersell alternatives.

All quotes must be attributed with source links.

Keep code snippets runnable and minimal.

Use MkDocs Material admonitions for callouts:

New chapters go in docs/ and must be added to nav: in mkdocs.yml .

When comparing tools, be fair. State facts, cite sources.

14.4 Local preview

•

•

•

•

•

•

•

1.

2.

3.

•

•

•

•

•

!!! tip
 This is a tip.

!!! warning
 This is a warning.

•

•

pip install mkdocs-material
mkdocs serve
http://localhost:8000

14. Contributing

- 40/42 - CC BY-SA 4.0

https://github.com/sparticle9/pi-handbook

14.5 What not to do

Don't add vendor-specific promotional content

Don't commit credentials or API keys

Don't use AI-generated filler text

Don't remove the disclaimer about unofficial status

14.6 License

Content is licensed under CC BY-SA 4.0. By contributing, you agree to license your work under the same terms.

•

•

•

•

14.5 What not to do

- 41/42 - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

15. Download

Get the full handbook as a single PDF for offline reading.

Download PDF

The PDF is regenerated automatically on every push to main .

15. Download

- 42/42 - CC BY-SA 4.0

/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf
/pdf/pi-handbook.pdf

	Pi Coding Agent Handbook
	1. Pi Coding Agent Handbook
	1.1 What's inside
	1.2 Get involved
	1.3 Chapters
	1.4 Key references

	2. Core Philosophy
	2.1 The Minimal Core
	2.2 Context Engineering as First Principle
	2.3 Primitives, Not Features
	2.4 Software That Builds Itself
	2.5 The "What We Didn't Build" List
	2.6 YOLO by Default

	3. Architecture and Four Tools
	3.1 The Monorepo
	3.2 Four Tools
	3.3 Four Execution Modes
	3.4 Context Control Stack
	3.5 Session Format

	4. Extension System
	4.1 Capabilities
	4.2 Quick Start
	4.3 Extension Locations
	4.4 Event Lifecycle
	4.5 Skills vs Extensions
	4.6 Pi Packages
	4.7 Self-Extending Agent

	5. Session Management
	5.1 Core Concepts
	5.2 Key Commands
	5.3 In-Session Navigation
	5.4 Branching Workflow
	5.5 Compaction
	5.6 Cross-Project Sessions
	5.7 Comparison with Amp's Thread Model

	6. Multi-Model Freedom
	6.1 Supported Providers
	6.2 Switching Models
	6.3 Context Handoff
	6.4 Model Aliases (via pi-model-switch extension)
	6.5 Custom Providers
	6.6 Scoped Models
	6.7 Practical Workflow

	7. No MCP: The CLI-First Philosophy
	7.1 The Problem with MCP
	7.2 The CLI Alternative
	7.3 The Benchmark
	7.4 If You Must Use MCP
	7.5 The Deeper Argument
	7.6 Community Perspective
	7.7 The Counter-Argument: MCP Is Evolving

	8. Community Extensions
	8.1 shitty-extensions (by hjanuschka)
	8.1.1 Oracle Usage
	8.1.2 Handoff Usage

	8.2 pi-model-switch (by nicobailon)
	8.3 pi-subagent-enhanced (by nicobailon)
	8.4 @marckrenn/pi-sub-core
	8.5 pi-skills (by Mario Zechner)
	8.6 Armin Ronacher's Extensions (referenced in his blog)
	8.7 Notable Community Integrations
	8.8 Finding More Packages

	9. Comparison with Other Agents
	9.1 Overview Matrix
	9.2 Pi vs Claude Code
	9.3 Pi vs Amp
	9.4 Pi vs OpenCode
	9.5 Pi vs Aider
	9.6 The Armin Ronacher Perspective

	10. Limitations and Gaps
	10.1 No Native Cross-Session References
	10.2 No Built-in Permission System
	10.3 No IDE Integration
	10.4 Steeper Learning Curve for Non-Terminal Users
	10.5 Extension Quality Varies
	10.6 No Built-in Eval/Testing Framework
	10.7 Windows Support is Second-Class
	10.8 No Server-Side Session Management
	10.9 No Native Long-Term Memory
	10.10 Small (but Growing) Ecosystem
	10.11 The "Un-Google-able" Name
	10.12 No Cloud Workspace

	11. Quick Start and Daily Workflows
	11.1 Installation
	11.2 Android (Termux) Setup
	11.3 Authentication
	11.4 First Session
	11.5 Essential Commands
	11.6 Editor Features
	11.7 Message Queuing
	11.8 Recommended Setup
	11.8.1 1. Global AGENTS.md
	11.8.2 2. Project AGENTS.md
	11.8.3 3. Install Community Extensions
	11.8.4 4. Configure Model Aliases

	11.9 Daily Workflow Patterns
	11.9.1 Focused Task
	11.9.2 Exploration + Branch
	11.9.3 Multi-Model Brainstorm
	11.9.4 Handoff Between Sessions
	11.9.5 Resume Previous Work

	12. Code Snippets Reference
	12.1 Extension: Permission Gate
	12.2 Extension: Oracle (Simplified)
	12.3 Extension: Session Recall
	12.4 Skill: Web Search (CLI-based)
	12.5 AGENTS.md Template
	12.6 Custom Provider Configuration

	13. Official References
	13.1 Core Documentation
	13.2 Extension Examples (50+)
	13.3 Source Code
	13.4 Community Packages
	13.5 CLI Tools (Mario's agent-tools)
	13.6 Blog Posts and Articles
	13.7 Community Discussions
	13.8 DeepWiki (AI-generated docs from source)

	14. Contributing
	14.1 What we're looking for
	14.2 How to contribute
	14.3 Guidelines
	14.4 Local preview
	14.5 What not to do
	14.6 License

	15. Download

